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ABSTRACT 

This thesis is concerned with the develoc ment of a general and rigorous broad- 

banding theory for varactor parametric amplifiers.    Fundamental gain-bandwidth lim- 

itations of a varactor parametric amplifier are obtained which are independent of the 

equalizer.      Results obtained in this theory lead to the design and synthesis of broad- 

band varactor parametric amplifiers. 

The circuit considered in this thesis is that of linear variable capacitors embed- 

ded in an arbitrary,   passive,   lossless environment in which the signal frequency and 

one of the sideband frequencies can exist.    In the course of developing a broadbanding 

theory,  some fundamental inherent properties of a parametric device are revealed. 

The first is that the varactor,  when embedded in an arbitrary,  passive environment, 

presents an impedance which can be characterized by a positive function rather than a 

positive-real function.    The second and more important inherent property is that,  due 

to the frequency-coupling action of the variable capacitor,  the scattering coefficient at 

the varactor port is quadratic in nature.    A broadbanding theory has been obtained, 

taking into account both of these properties.    Some realizability conditions are pre- 

sented which are indicative of the inherent properties of a parametric device. 

A finite gain-bandwidth restriction exists for any varactor device because of the 

presence of its associated parasitic elements.    The limitation on the transducer power 

gain function for an optimum nonreciprocal three-port equalizer using a single varac- 

tor is derived,  from which we obtain the maximum flat gain attainable over a prescribed 

band of frequencies.    Furthermore,   optimum equalizers may be designed to yield a 

modified form of Butterworth or Tchebycheff transducer power gain responses of arbi- 

trary order.    These responses may be chosen to approach the maximum gain-bandwidth 

as closely as desired.    Some of these results are generalized for the case of n-varactor 

diodes embedded in a passive,  lossless environment. 

Another part of this thesis deals with the stability of systems incorporating n- 

varactors embedded in an arbitrary,  linear,   stable,  time-invariant environment.    The 



stability behavior must be considered in ordei for the varactor to be useful as a device 

for linear-controlled amplification.    A stabil'y criterion for the three-frequency mode 

of operation is obtained when we invoke the ict al sideband-termination assumption. 

The validity of the usual truncation technique fii applied to stability considerations is 

discussed. 

Without imposing the ideal sideband-terrunation assumption,  the stability is gov- 

erned by a linear three-term recursion relaticn and the derived infinite determinant is 

of the special type associated with continued fractions.    A real-frequency stability con- 

dition is established for the undriven response of n-varact.or devices coupled through 

Unear,  stable, time-invariant n-ports.    This stability criterion leads to easily obtained 

bounds on the pumping ratios of the time-variable elements.    Finally,  a representation 

theorem on the steady-state response of a driven system is presented. 
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CHAPTER    I 

INTRODUCTION 

With the recent advent of semiconductor diodes the design of parametric devices 

has become a practical reality of great importance and has stimulated the network the- 

orist to investigate the fundamental capabilities of these parametric devices.     Past at- 

tention has been focused mainly on the physical aspects of the device and performance 

limitations of specific circuits which are not fundamental attributes of the device.   This 

thesis is concerned with the development of a general and rigorous broadbanding theory 

for varactor parametric amplifiers.     Fundamental gain-bandwidth limitations of a va- 

ractor parametric amplifier are obtained which are independent of the associated cir- 

cuitry.     Results obtained in this theory lead to the design and synthesis of broadband 

varactor parametric amplifiers. 

The circuit considered in this work is that of linear variable capacitors embedded 

in an arbitrary, passive, lossless environment in which the signal frequency and one of the 

sideband frequencies can exist.    We are concerned with a linearized theory of a para- 

metric device within the scope of small signal analysis.    This theory reveals some 

rather fundamental properties of a parametric device that are in marked contrast with 

a tunnel diode device,   although both are two-terminal negative resistance  devices.    The 

first property is that the varactor,   when embedded in a passive environment,  presents 

an impedance which can be characterized by a positive function rather than a positive- 

real function.    The second inherent property of these parametric devices is the quad- 

ratic nature of the expression of the scattering coefficient at the diode port.    This is 

due to the interaction between the signal and the sideband circuits through the mixing 

or frequency-coupling action of the variable capcitor.    This is also indicative of the 

fact that the broadbanding of a parametric device involves essentially the problem of 

the design of a broadband equalizer to match a load impedance when the load impedance 

is a function of the characteristic of the equalizer under consideration.    A broadbanding 

theory has been obtained,  taking into account both of these properties,  and,   furthermore, 

some important realizability conditions on the transducer power gain function are delin- 



eated. 

A finite gain-bandwidth restriction exists for any varactor device because of the 

presence of its associated parasitic elements.    The limitation on the transducer power 

gain function for an optimum nonreciprocal three-port equalizer is derived,  from which 

we obtain the maximum flat gain using a single varactor attainable over a prescribed 

band of frequencies.    Furthermore,   optimum equalizers may be designed to yield a 

modified form of Butterworth or Tchebycheff transducer power gain responses of arbi- 

trary order.    These responses may be chosen to approach the maximum gain-bandwidth 

as closely as desired.    These results are generalized for the case of  n-varactor diodes 

embedded in a passive lossless environment,   which constitutes a special case of the 

traveling wave or distributed parametric device. 

The parametric amplifier has become an important and useful device largely be- 

cause of its low-noise properties.     The low-noiae performance of the varactor arises 

from the relatively small dissipation.    The noise performance of a dissipationless pa- 

rametric amplifier is well-known.    When the spreading resistance is not negligible, 

there is an ultimate limit on the noise performance.    This is briefly discussed. 

In order for the varactor diode to be useful as a device for linear controlled am- 

plification,  the stability question must be carefully investigated.    We first show that, 

within the framework of small-signal analysis,   stability is delineated by the roots of a 

transcendental relation derived from the infinite Hill determinant.    When we assume 

the pump to be purely sinusoidal,   a three-term recursion relation is obtained and the 

infinite determinant is of the special type associated with continued fractions.    We then 

show that if we impose the ideal sideband-terminations assumption,   stability is implied 

if the equation   Z (p) + zr.(p) = 0   has no root in the entire closed right-ha_   p-plane, 

where   Z (p)   is an arbitrary positive-real function and   z_(p)   is the varactor diode 

impedance.    The validity of using this as the stability criterion is discussed. 

Using an energy argument,   a stability test for systems incorporating   n   varactors 

embedded in an arbitrary,  linear,, stable,  time-invariant environment is established, 

in which the ideal sideband-termination assumption is not imposed.    The stability cri- 



terion obtained leads to easily obtained bounds on the pumping ratios  of the time- 

variable elements.    Finally,  we prove that for a linear variable system,  whose param- 

eters are periodic functions of period   T   driven with the excitation   ePt,  Re p > 0,  the 

steady-state response must be of the form   ept V(t),   where   V(t)   is a periodic function 

of period   T,   provided that the undriven system is stable. 

A point contact or junction diode,  when back-biased,  has an equivalent circuit 

shown in Fig. 1(a).    It is composed of a nonlinear capacitance,   a constant resistance 

Rs,   and an inductance   L,^   in series.    Physically,  the nonlinear capacitance is the de- 

pletion layer or barrier capacity which is voltage sensitive,   L     is the lead inductance 
o ' 

and   Rs   iS the base or sPreading resistance of bulk semiconductor.    The voltage sen- 

sitive barrier resistance,   which shunts the barrier capacitance,  is so large in the back- 

biased condition that it can be neglected.    The value of the barrier capacitance depends 

on the voltage (or the charge) across the capacitance;   typically,  it varies as the square 

root or cubic root of the voltage across it. 

Within the scope of the small-signal analysis,   the pumped varactor appears to the 

small signals as a linear time-variable capacitor as shown in Fig. 1(b).    The series re- 

sistance of the varactor is assumed to be small and is neglected in our broadbanding 

work.    Similarly,  if the frequency band of operation is not too high, the parasitic in- 

ductance need not be included and the simplified model of Fig. 1(c) suffices.    A network 

model which includes the parasitic inductance   L     is treated in Section V.6 to determine 

its effect on the gain-bandwidth performance. 



CHAPTER    II 

FUNDAMENTAL RELATIONS  OF NONLINEAR  REACTANCE  AMPLIFIERS 

11.1     Introduction 

3 
Manley and Rowe     have derived some general energy relations which govern the 

behavior of energy flow in circuits containing nonlinear capacitors and inductors. These 

important relations form the basis of the theory of parametric amplifiers and other re- 

lated devices. The Manley-Rowe relations, which essentially set a weighted sum of 

real powers at various frequencies entering a nonlinear reactance to zero, are remark- 

able in that they are independent of the shape of the nonlinear characteristic and of the 

power levels at the various frequencies. The only assumption that has been made in the 

derivation is that the nonlinear characteristic is single-valued. 

The usefulness of the Manley-Rowe power relations can be illustrated by using 

the ideal sideband-terminations assumption, i.e.,  we assume that all sidebands,   except 

a few of interest,   are suppressed.     This leads to the so-called "inverting" and "non- 

inverting" parametric devices.    The plausibility of achieving parametric amplification 

in the   'inverting" device is demonstrated. 

The small-signal analysis is the primary tool employed in this investigation,  in 

that we assume that the amplitudes of the signal and all the generated sidebands are 

small compared to the pump.    Hence,  we consider only the sidebands generated at fre- 

quencies   u,  +nu     instead of   u =mw,  + n u)  .    Although both circuits containine 1           o                             m,n 1 o 6 

nonlinear reactance and linear time-variable reactance will be capable of frequency 

conversion, they are quite different as far as mathematical analysis is concerned.    By 

using the linear time-variable model,  all the analytical techniques applicable to linear 

systems are available. 



II.2     Manley-Rowe Formulas 

A nonlinear lossless capacitor is, -by definition,  a two-terminal device in which 

charge   q   and voltage   v   are related through an expression of the form 

q =  f(v)     . (2-1) 

We shall exclude hysteresis and so require   f (v)   to be a single-valued function, but 

otherwise its shape is arbitrary. 

Now assume that signals at two incommensurate frequencies,   w     and   wo,   are 

applied by signal generators to the nonlinear capacitor.    In general,  all of the frequen- 

cies   u      = mu)    + nw     will be present in the circuit and in the nonlinear capacitor, 
mn 1 o 

where   m   and   n   take on all Integral values.    Hence,  the charge   q   flowing into the 

nonlinear capacitor can be written as a double Fourier series in the following form: 

ao oo j(mu)   + nu )t 
q  = V T      Q e 1 0 . (2-2) ^- LJ u      ^m,n 

m = -oo    n ■ -oo 

Since   q   is real. 

Q -  Q . (2-3) 
m,n -m,-n 

Taking the total derivative of Eq. (2-2) with respect to time,   we obtain the current 

i   flowing into the nonlinear capacitor. 

oo oo j(mw  +nu) )t 
£S   _ V V     T - ' 0 

dl i  =   TT  = Z Z     1 e l "        • (2-4) 
It " "       m,n 

m = -oo   n = -oo 

where 

I =   j(mij, + nw )Q =   I 
m,n       ■' 1 o      m.n -m,-n 

(2-5) 



Since the nonlinear characteristic of Eq. (2-1) is assumed to be single-valued, 

the voltage   v   across the nonlinear capacitor must consist of the same frequency com- 

ponents as the charge   q.    Thus   v   may also be represented as a double Fourier series 

00 00 

X £       Vn6 
m = -oo   n = -oo 

j(mu   + nu )t 
(2-6) 

where 

m,n -m.-n 
(2-7) 

The average power tiowing into the nonlinear capacitor at the frequencies 

+   m (j.  + n u      is 
— 1 o' 

W =2ReV I =   -2(mu,  + nu ) Re(1V Q        ). (2-8) 
m,n m,n   m,n 1 o •'    m,n     m,n 

Now,   since the nonlinear capacitor is assumed lossless,   we have from conservation of 

energy 
00 00 

^ 0 m.n 
m = -oo   n = -oo 

(2-8) 

Equation (2-8) may be rewritten by multiplying and dividing each term by its correspond- 

ing frequency: 

00 00 

Y y      (mu;    + nu  )     T———-^ r   =    0 
" " 1 o      (mu.  +   nu  ) m = -JO   n = -oo 

W 
(2-9) 

Splitting into two terms,   and writing the appropriate range for the summations,  we have 

oo m W oo oo nW 
mn        . vi v ntin ",        I I ™n       + u 11       ^—    =   0     .        (2-10) 

1       '-' »J      mu. + nu o        '-' '-'„    mu    + nu 
m = 0    n = -ac 1 o m=-oon = 0 1 o 

4 5 
It has been shown   '     that each of the  two terms of Eq. (2-10) may be separately set 



\ 
7 

equal to zero,  i. e.. 

and 

oo oo m W 
V V mn        =   o     , (2-11) 
t-t •-J       m (d    + n u •-J      mu,  + nu 

in = 0n=-oo 1 o 

oo oo n W 
mn =   o (2-12) 

u Li      m y    + n u 
in = -oo    n = 0 1 o 

These are the energy relations of Manley and Rowe.    The two Manley-Rowe relations 

are not independent of the law of conservation of energy;   in fact,  multiplication of Eq. 

(2-11) by   w,   of Eq.(2-12)by   u.o.   and addition give Eq. (2-8).    The result was origi- 

nally proved for a nonlinear capacitor,  but the extension to a nonlinear inductor is ob- 

vious. 

Furthermore,   Manley-Rowe relations can be extended to apply to any combina- 

tions of nonlinear reactors and linear,   lossless,  time-invariant networks.    First,   be- 

cause of the linearity and time  invariance of the latter networks,  no frequency coupling 

can take place,   i. e..  no power can be transferred from one frequency to another in these 

networks.     In addition,  since they are lossless,  they cannot change the relation between 

average power at frequency   mu^ + nu^   at the terminals of the nonlinear reactors. 

II. 3     Inverting and Non-Inverting Parametric Devices 

The usefulness of the Manley-Rowe power relations can now be illustrated by con- 

sidering two devices in which power flow at only three frequencies of major importance 

is allowed.    This corresponds to assuming that the nonlinear element is terminated in 

an ideal filter that suppresses the current through or the voltages across the nonlinear 

element at all but the significant frequencies.    Let the signal generator at   u>1 = ^ rep- 

resent a signal source,  and the generator at   %  the local oscillator or pump source. 

Consider first the case where power flow is allowed at the idler or difference frequency. 



u   = u)   - u  ,  then the summations of Eqs.(2-ll) and (2-12) reduce to 
i       o      s 

W W. 
— +   -i  =   0     ,                                                      (2.13) 
U 10. 

O 1 

W W. 
 S  1 

U U). 
8 1 

(2.14) 

We are supplying powers at   u  ,  hence   W     is positive.    The fact that   W     and   W. 

may be simultaneously negative predicts that infinite gain is possible and that such a 

device is potentially unstable at both   u     and   u.    when embedded in a linear,  passive 

environment.    This capability manifests itself through the fact that the real part of the 

input immitance at the terminals of the varactor is negative for both the signal and idler 

frequencies.    Equations (2-13) and (2-14) are often used to demonstrate the plausibility 

of parametric amplification in this so-called "inverting" device.    It ia to be noted from 

Eq. (2-14) that idler frequency dissipation is required for the desired amplification at 
■ 

the signal frequency.    This is another fundamental property of this device which can 

be deduced from the Manley-Rowe relations. 

Next,  we consider the case where the capacitor is terminated so that power flows 

only at frequencies   u    = u  , w  ,  and   u    = u   + u   ,  the sum frequency.     Then this so- J ^ 1        B     o u        o       s 
called "non-inverting" device obeys the relations 

W W 
—?■   +  —   =    0     , (2-15) 

8 U 

W W 
_°   +  -1   =    0     . (2-16) 

10 10 
o U 

These relations predict that the device is unconditionally stable when embedded in an 

arbitrary linear passive environment.    Furthermore,  the maximum transducer power 

gain that can be obtained with such a device is precisely given by the ratio of   "u/ws 



when used as a frequency up-converter. 

The choice of the names "inverting" and "non-inverting" in the two cases dis- 

cussed is based on what the devices do to the signal spectrum,  as may be seen by con- 

sidering not a single frequency but a band of signal frequencies.    The distribution of 

the frequency spectrums is illustrated in Fig. 2.    Of the two cases,   the inverting para- 

metric device is of major interest and will be our main concern in the subsequent work. 

Another significant point needs to be indicated here.    It is important to note that 

the artifice of restricting the analysis to a particular finite set of desired frequencies 

imposes severe limitations on the validity of the results obtained for a specific applica- 

tion.    For example,   when this assumption of ideal sideband-terminations is applied in 

the study of the stability behavior of the inverting device,  the validity of the results 

must be carefully examined. 

II. 4    Small-Signal Analysis 

Although the Manley-Rowe relations provide a basis for deducing some general 

properties of nonlinear reactance circuits,  they are of course no substitute for a de- 

tailed circuit analysis of a particular nonlinear device.    Several approximate charac- 

terizations of nonlinear elements lend themselves to standard analytical techniques and 

give results which are satisfactory in most practical applications.     Most of these ap- 

proximate methods involve some form of small-signal analysis.    We shall assume that 

the signals and all the generated sidebands are small in amplitude compared to the 

pump.        Hence,  these small signals see the pumped varactor essentially as a linear 

time-variable capacitance   C(t)   at fundamental frequency   u  ,   instead of a nonlinear 

element.    In the linear mode we are considering,   all the analytical techniques applicable 

to linear systems  such as the principle of superposition,   Fourier analysis,   and the 
7 

Floquet theory    are available.    But,  on the other hand,  we can only predict small- 

signal properties,  not the saturation effects. 

Within the framework of small-signal theory,  the pump source and the nonlinear 



10 

capacitor can immediately be replaced  by a linear time-variable capacitor   C(t). 

Once   C(t)   is specified,  the actual pumping circuit used is of no more interest and 

will not be discussed further in this work.    The linear time-variable capacitor,  C(t), 

relates the charge   q(t)   on its positive plate to the voltage   v(t)   across its plates as 

follows: 

q(t)   =   C(t) v(t) (2-17) 

The pumped varactor operating in the linear mode is illustrated in Fig. 3.    In most 

parametric applications the varactor is pumped periodically,  so that in a small-signal 

theory the effect of the pumping is to produce a time-variable capacitor for which the 

following Fourier series applies: 

C(t)  =        I     C 
jru^t 

(2-18) 

where 

C     =   £_ (2-19) 

because   C(t)   is a real function of time. 

Now we consider the situation where the parametric element is embedded in an 

arbitrary,   linear,  time-invariant environment (Fig. 4).    Suppose the embedding network 

is lumped,  then the equilibrium state is giverned by an ordinary differential equation 

with periodic coefficients of period   T = u  /2IT.    According to Floquet theory,  we can 

always find initial conditions yielding a solution of the form 

v(t) e      ,//(t) (2-20) 

where   ip{t)   is periodic with period   T = u  /2ir   and /i   is any one of the associated Flo- 

quet exponents.    A real-frequency stability test has been established for the undriven 
o 

response of varactor devices coupled through linear,   stable,  time-invariant n-ports. 

This will be presented in Chapter VIII where we shall treat the stability question more 
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extensively.    For the present purpose,  we shall assume that the stability of the undriv- 

en system has been established (in the sense that all the Floquet exponents have non- 

positive real parts);   then it is proved in Section VIII.4 that the steady-state response 

of the system driven with   e    ,    Re p > 0, is of the form 

v(t)  = ept V(t)     , (2-21) 

where   V(t)   is periodic with period   T = u  /27r. 

Developing the corresponding periodic function   V (t)   into Fourier series,   we can 

write 
« jku   t 

V(t)=        E     Vke       0 

k = -oo 
(2-22) 

From Eq. (2-17),   and using   i(t) = -dq/dt, 

Mt)  =>   - ~   [c(t) V(t) ePt]     , (2-23) 

i(t)   =   -   di 
2   c   V 

[p +j(r + k)uo]t 

r, k 
r     k 

'    X    CrVk [P+J(r +k)wo] 
r, k 

[p + j(r + k)uo]t 
(2-24) 

Let   r + k = n,  and 

oo (p + jnw  )t 
i(t)  =-    I      l    e LJ        n 

n = -oo 
(2-25) 

we obtain from Eq. (2-24) coupled with Eq. (2-25) 

.(t)  = -      Z        C     V (p + jnu  ) '-' r     n-r o 

(p + jnu )t 

n,r = -oo 
(2-26) 



and 

12 

In =  (p + jnug       I      Cr Vr    ' (2-27) 

r = -oo 

where   n = 0, +1, +2,     Hence, we have succeeded in expressing   I     in terms 

of the coefficients   C     and   V  .    For   n = 0,   n=-l,   and   n=l,   we have,   respectively, n n i r j • 

00 

I       =  P        E       C     V o c        i-i r      -r 
r = -oo 

and 

I.!   = (P- j"0)      Z      cr V.i.r    - <2-28) 
r = -oo 

I+1=(P + JUO)     E    crv+l_ 
r = -oo 

A special but important case is that of a weakly-pumped capacitor: 

C(t)   =   C    + 2C    cos (u)   t)     . (2-29) 
o 1 o 

The quantity 
2C. 

P   =   -7~ (2-30) 
C 

o 

is known as the pumping ratio.    Typical values of   p   range from 0.2  to 0.5.    For this 

case,   Eq. (2-27) simplifies to 

I 
" CV +CV+C,V,, (2-31) 

(p+jnu  ) 1     n-1 on -1     n+1 

G-l   =   Cl     ' 

in which the current generated at each frequency,  I , is determined solely by the vol- 
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tages at that frequency and the two frequencies removed by the pump frequency   u  . 

Equation (2-31) is in the form of a three-term recursion relation which characterizes 

the case of a weakly-pumped varactor where all the sideband frequencies   u    + nu 

are taken into account. 

II.5    Assumption of Ideal Sideband-Terminations and Derivation of Varactor Diode 

Impedance 

The immediate task here is to apply the results obtained in the previous section 

to derive the expressions for the varactor diode impedance assuming ideal sideband- 

terminations for all sideband frequencies except a few of major importance.    First, 

let us consider the case in which all   V    =0   except   n = 0, -1 and +1,   but without im- 
n 

posing the weakly-pumped varactor or sinusoidal pump condition.    For the present ap- 

plication,  we shall consider the driver to be   exp(ju  t)   rather than   exp(pt).    From 

Eqs.(2-27), 

I-1   =  U"a-K
)CoV-l   +(JUs-JlJo)C-lVo + (jUs-^o)C-2Vl     ' 

(ju, ) C1V-1   + (ju C      V    + 
o       o Uus) c-lvl 

(2-32) 

^l  = ^u
s
+JWo)C2V-l+(jU8 + K)Cl    Vo + (Jws+iWo)Co    Vl   ' 

where   C   =C       and   C   =C    .    Changing the notation from   V     to   V  ,   V       to   V., 
1— 1 £ ~ ci OS- il 

V        to   V   ,   and similarly with the corresponding   I's,   we obtain 
+1 u 

JUiCo -^i0-! -JUi  C-2   " " vi 

jlüsCl ^sCo ^8C-1 
V 

s 

KC2 jüuCl 
j«    C u    o 

V 
u 

(2-33) 
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where   M. * w   - U     is the idler frequency and   w    = U    + u     is the upper-sideband fre- 
IOS ~i J uos r 

quency.    The matrix equation (2-33) essentially corresponds to the small-signal varac- 

tor diode admittance matrix given by Rowe in Reference 6. 

The diode impedance   z      is shown in Fig. 6,  in which the d. c.  capacitance contri- 

bution   C     is shown explicitly shunting the equalizer.    The diode admittance at the sig- 

nal frequency ia related to the diode impedance at the idler and the upper-sideband fre- 

quencies by the following equation: 

V^s*  = UsCl 
i2uiUJu(ReC2)zD(jU,u)zD(j"i)+Cl[u)iZD(JUJi)-"uZD(Ju)u)] 

1 -u. ^  iC2|
2zD(jü.)zDUüu) 

(2-34) 

Since the network is excited by a source at   u  ,  the following equalities hold: 

V^i* = ■VJ'V  ' (2-35) 

V^u*   =   "V^u*     ' (2-36) 

where   Y.   is the admittance seen looking into the equalizer at the diode port 3 (see Fig. 

6).    Substituting into Eq.(2-34) gives 

V^  '- "s Cl 

j2u.uMRe C2) Z3(Juu) Z3(jW.) + C^Z^) - ^Z^S] 

l-UiUu  iC2i2z3(Jüi)Z3(jU,u) 

(2-37) 

In Eq. (2-37),  the diode impedance is expressed as a function of the impedances looking 

into the equalizer at the idler and upper-sideband frequencies.    Note that the presence 

of terms in   C      means that the effects of both the pump and its first harmonic on the 

small signals are included. 

For a weakly-pumped varactor defined by Eq. (2-29),   C    = 0;   then Eq. (2-37) re- 

duces to 



15 

^•V   =  "s C?  [Uu Z3(jUu) " Wi Z3(jUi)] (2-38) 

For the inverting device,  the voltage at   u     is svppreBsed to give   Z   (ju  ) = 0.    Then 

Eq.(2-37) becomes 

zD{i%) 2 — 
u   u. C,  Z„(jw.) 
si     1     3      i 

(2-39) 

Since 

RezD(ju,s)  = 
U)    (U      -   U!   )   C, 
so        s       1 

2    ReY3"^     ' 
(2-40) 

it is clear that the varactor diode impedance will exhibit a negative real part within 

the frequency band of interest.    Finally,   for the non-inverting device,  the voltage at 

u).   is suppressed to give   Z   (ju.) = 0.    Now Eq.(2-37) becomes 
i * o      i 

V^   =  +U,syuClZ3(jU'u) (2-41) 



CHAPTER   III 

STEADY-STATE  TRANSDUCER  POWER GAIN  FUNCTION 

AND  PRELIMINARY RESULTS 

III. 1      Preliminary Notation 

  sje - 1 
Let   A   be an arbitrary matrix.    Then   A',  A,   A ,   A       and   det(A)   denote,   re- 

spectively,  the transpose,  the complex conjugate,  the complex conjugate transpose, 

the inverse,   and the determinant of   A.    Column vectors are denoted by   a,  b,  V,  I, 

etc.,   or in the alternative form   x = (x  , x„, . . . , x  )     whenever it is desirable to ex- 
~ 1      ^ n 

hiblt the components explicitly.    The matrices    1   ,   0     and   0 represent,  in the 
n    ~n m,n 

same order,   the   n X n   identity matrix,  the  n-dimensional zero column-vector and 

the   m Xn   zero matrix.     A diagonal matrix with diagonal elements   u   , u      . . . , u 
12 n 

is written as    A = diag  (u , u      . . . , u 1.    For a hermitian matrix   A = A ,   A > 0   means 

that   A   is the matrix of a non-negative quadratic form.    If   A   is positive definite, 

A > 0,   and if   A   is semi-positive definite,   A > 0. 

A matrix   A(p)   is said to be real if   A(p) = A(p).    In particular,   A(ju) = A(-ju) 

for all real   u.    Since we will be dealing with functions which are not necessarily real 

for real   p   throughout this work,  we must introduce an operation that generalizes the 

notion of "replacing   p   by   -p."     Let   A(p)   be an arbitrary rational (or m^romorphic) 

matrix.    Then 

A*(p)  5   A   (-p)     . 

Note that for  p = ju),   A.(ju)) = A (ju).    Also,   A. Jp) = A(p)  and (AB)   = B,. A..   An  n X n 
* _ 

matrix   A(p)   is said to be paraconjugate hermitian if   A   (p) = A(-p),   and paraconjugate 
* 

unitary if   A   (p) A(p) = 1   .    On   p = j (j,  the two conditions reduce to   A   (ju) = A(ju)) 
* * n 

and   A   (ju) A(ju)) = 1   ,   respectively,  which are the usual criteria for hermitian and 

unitary matrices. 

16 
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A scalar function   a(p)   satisfying   a   (p) = ä(-p) = a(p)   is called par aeon jugate. 

If   a(p)   is real it is actually even.    A rational function   b(p)   satisfying   b^p) b(p)= 1 

is called a Blaschke product,   i. e.,  an all-pass factor.    A regular Blaschke product is 

analytic in   Re p > 0.    Since   b   (p) b{p) » 1   implies that    |b(ju)|    =1,  any Blaschke 

product is automatically analytic on   p = ju.    A regular Blaschke product   b(p)   may 

always be represented in the form 

b(p) 
n      p - p 

e36     TT     —^ 
r=l    P + Pr 

(3-1) 

where   Re p    > 0,   r =  I, 2, . . . , n.    If   b(p)   is real,   b(p) b(-p) = 1    and   6 = 0  or  w. 

Finally,  the norm of a matrix   A,   | |A| |, is defined to be the positive square 
* 

root of the largest eigenvalue of   A   A. 

III.2     Scattering Formulation with Complex and Frequency Dependent Normalization 

It is well known that a passive  n-port   N   can always be described in terms of its 
g 

n X n   scattering matrix   S(p)   normalized to a set of real and positive port numbers. 

Recently,   Youla     '        described a method for defining on the real-freqrency axis the 

scattering matrix of an  n-port normalized to   n   arbitrary non-Foster positive functions 

z   (ju),   z   (ju), . .. , z   (ju).    More precisely,  it was shown that to any passive lumped 

n-port   N,   and any prescribed set of functions with positive real parts over the frequen- 

cy range of interest,   it is possible to assign an   n X n   "normalized" scattering matrix, 

S(p),  having all the properties of a scattering matrix normalized to a set of positive 

port numbers. 

The augmented n-port   N      corresponding to the linear, time-invariant n-port 

N   is derived from   N   by inserting   z   (j u)   in the corresponding   kth   port.    This is de- 

picted schematically in Fig. 5,  where we assume that the impedances   z   (jw),  z   (ju), 

. . . , z   (ju)   have positive real parts over the frequency band   W,  i.e., 
n 
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Real z   (jw)  =   r   (u) > 0   , " e  w   . (k = 1, 2, . . . , n)   . (3-2) 

The normalized incident wave amplitudes,   a   , a  , . . . , a  ,   and reflected wave 

amplitudes,   b^ b2, . . . , bn,   impinging on the n-port   N   are defined as follows: 

and 

2^\   ak 
= ^Vk 

2/^   bk=   \-\l
k 

(3-3) 

(3-4) 

(k =  1, 2, n) 

All square  roots have been chosen positive.    In matrix form. 

and 

where 

2R        a=V+ZI     , 

2 RI/2   b  =   V  -  Z I     , 

diag  [Zl,   V  ....   zj 

11   =    dia«   lri'   r2'   ■••'   rn] 

«±1/2 -4- U =    diag 
+ 1/2       ± 1/2 ±1/2 

(3-5) 

(3-6) 

and 

a   = (a   ,   a   ,   . . .,   a   ) 
~ 1       2 n 

b  = (b      b b  )'      . 
~ 1       2 n 

V  » (V  .   V,,,   ....  V   )'      , 
~ 12 n 

~I= "i'^ V 

(3-7) 
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The   nXn   scattering matrix   S(jtj)   of   N,   normalized with respect to a set of pre- 

scribed functions   z   (ju),   z   (ju),   ....   z   (ju),   is defined by means of the linear ma- 

trix equation 

b   =  S a     . (3-8) 

It has been shown      that the normalization procedure defined by Eqs.(3-3) and (3-4) 

has succeeded in preserving ail the important properties possessed by a scattering ma- 

trix normalized to real positive port numbers.    Hence,  if   N   is lossless over   W,  the 

"normalized"   nXn   scattering matrix   S(ju)    is unitary for   u E W,   i.e., 

1     - S   (ju) S(ju)) = 0  . From (3-8) and the unitary character of   S,  we have 
n n 

a  =   S*(jw) b     . (3-9) 

Now suppose that port   k   is terminated in   z  ,   then   V    = - z    I.    and,  from Eq. 

(3-3),   a    = 0.    Also,  if port   k   is termination in   -z   (ju)   instead of   z   (ju),  then 
k ' K K 

V    =z    I     and,   from Eq. (3-4),    b,   =0.    In short,   closing a port on its respective 
k        k   k k 

normalization impedance obliterates the corresponding incident wave,   whereas termi- 

nation in the negative complex conjugate of the normalization impedance obliterates the 

reflected wave.    In the first case the port is said to be "matched" and in the second to 

be "paraconjugate matched. 

If port   k   is energized through a generator   E     with internal impedance   zk(ju), 

and all other ports are closed on their respective normalization impedances,  then 

E 
a     =    §         , (3-10) 

k 
2/rk(ju) 

and 

Hence,   from Eq. (3-8), 

a    =   0     , i   i* k     . (3-11) 
i 
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bjt   =   8ik(jW)ak     ' U   -   l'2 "> 

E 

•*, Uw)         g • (3-12) t k 2 /r^Uu) 

Equation (3-1 1) coupled with (3-4) yields 

hii = '/V^ ^  '     f ^ k ' -  (3"13) 

and therefore (see (3-12)) 

|2 

Gk/u> =     ,—rr~ = Kk(Ju)i    •    ^ k ■ (3-14) 
^g1 

4 rk(JIJ) 

the transducer power gain from port   k   to port    ( .    In other words,  the transducer 

power gain from port   k   to port   r   under "matched" conditions is measured precisely 

by the square of the magnitude of the transfer coefficient   s     .    To determine   s  , (ju), 

let   Z   (ju)   represent the impedance seen looking into port   k   under matched termina- 

tions.    Then   V    = Z,   I,    and the division of Eq. (3-4) by (3-3) yields,   with the aid of 
k        k   k 

(3-12), 

b V,    -  z,   I, Z,    -  z, 
k ...             k         k   k         _k k^                                    fQ   i=\ 

— «   S, . (ju)   =   ———-—r-   =                .                             (3-15) 
a, kk ''              V.   + z    I Z     + z 

k k          k   k k          k 

If the  n-port   N   possesses an impedance matrix,   Z   ,  then it is possible to ex- 

press   S   in terms of   Z      and   Z.    Using   V = Z    ^,   we have 

1/2 
2 R '     a  =  (ZN  + Z) I_    , 

1/2 - 
2 R '     b  =  (Z^   - Z) I     . 

Therefore, 
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and 

2 Rl/2 S a  =   Rl/2 S R' '/2 (Zxt + Z) I  =   (Zx    -   Z) I     , 
N ~ N ~ 

s = R'l/2(zN - z)(zN + zf1 R1/2 (3-16) 

III.3     Derivation of the Steady-State Transducer Power Gain Function 

The normalization procedure discussed in the preceding section will now be uti- 

lized to derive an expression for the maximum transducer power gain attainable with 

a single varactor device embedded in a lossless environment.    The general structure 

under consideration is shown schematically in Fig. 6,  in which the varactor diode is 

placed across an arbitrary,   passive,   lossless  3-port in which the signal and idler fre- 

quencies can exist.    C      and   C     denote the first two coefficients of an equivalent lin- 

ear variable capacitor defined by Eq. (2-29).    The constant capacitance contribution is 

shown explicitly shunting the equalizer.    Hence,  the  3-port   N   is not an arbitrary loss- 

less   3-port but must be subject to the restriction that the diode port 3 is shunted by a 

capacitance of value not less than   C   .    The diode impedance at signal frequency is giv- 

en by Eq. (2-39). 

Let   S(ju  )   be the scattering matrix of   N   normalized to   z    = R     at port 1, 
s 1 g 

z    = R       at port 2,   and 
2 l-i 

Z3(J,V   =  " ZD{iu
a
) 

U
S
uiCl Z3{^i> 

(3-17) 

at port 3.    Note that   Re z   (ju  )   is positive over the frequency band of interest.    Using 

the normalization technique defined by Eq3.(3-3) and (3-4),   S   is unitary and Eq. (3-9) 

holds.    From the termination conditions at each of the ports,   we have   a   = 0, 

and   a    =E  /2JR~.    Therefore, 
1        g g 

0. 
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g 

ai  =   snbi +821b2    ' 

0    =   ¥12 bl   + «22 b2     ' 

(3-18) 

(3-19) 

a3  =   S13bl   +S23b2 
(3-2U) 

By Eqs.(3-18) and (3-19), 

s       a 
12    1 

(3-21) 

where 

A  =    SnS22-S12S21 
(3-22) 

12 ill i 
Furthermore,   using the unitary condition,  it can be shown       that    |A(jio)| = |s  „(jw)|. 

The steady-state transducer power gain,   G (u  ),  is by definition the ratio of the 

average power absorbed by the load   R      to the maximum available power from the gen- 

erator.    From Eq.(3-21) and   a   = 0, 

i     12        i      i 2      i      12 RjlJ     =   IbJ     -   |a2| 
12 

533 
(3-23) 

Therefore, 

G,(u  )   = 
t     s 

RJ^ 312(J"s) 

4R 

(3-24) 

The unitary condition,   S   (ju)S(Ju))= 1       implies that    js     (ju)|   <  1.    Consequently, 

G  (u  ) < 
t    s 

l^s^l 

=   G(u ) (3-25) 
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Applying (3-15) and (3-17),   s^fju  )   can be expressed as 

833(i,',8)  = 

Z3(ju's)-Z3(jU
S
)    _   Z3(ius)+ZD(J,J8) 

Z3{iUs)+Z3{^B
) Z3(JU,

S
) " S^V 

(3-26) 

S33(JU,
8
)  = 

^wiC1-Y3(3u,s)Y3(ju)i) 

-su>.cJ+Y3(ju)s)Y3(jlo.) 
(3-27) 

This expression demonstrates clearly the quadratic nature of the scattering coefficient 

at the diode port, i. e., s33 is quadratic in Y whereas in the case of equalization of 

passive load or tunnel diode the corresponding expression is linear in   Y  .    This is an 
ö 

inherent property of a parametric device.    The amplifying capability of the varactor 

parametric amplifier can be attributed directly to the frequency coupling mechanism 

Inherent in the device.    The quadratic nature is due to the interaction between the sig- 

nal and the sideband circuits through the variable capacitor.    It indicates that the 

broadbanding of a parametric device is analogous to the problem of the design of a 

broadband equalizer to match a load impedance when the load impedance itself is a 

function of the characteristic of the equalizer under consideration.    It indicates in gen- 

eral the complexity of this particular broadbanding problem. 

Substituting into (3-25), 

GAu )   < 
t    s 

Z3(j'0s)-ZD(JUs) 

s   G(u ) s (3-28) 

and,  finally. 

W s u)BU.C1-HY3(iu)a)Y3(j..) 

M8wici-VJ^V^) 
G(u  ) 

s (3-29) 
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Relation (3-28) actually embodies the solution to the broadbanding problem for both the 

tunnel diode and varactor with the loss and parasitic inductance taken into account.    A 

systematic treatment on the broadband tunnel diode amplifiers has been published by 
12 13 

Youla and Smilen. It can be concluded that the ultimate power gain for both the 

tunnel diode and varactor devices is completely delimited by the equalizer impedance 

Z     facing the respective negative impedance element.     For the varactor case,   how- 

ever,  the ultimate power gain is delimited not only by the equalizer impedance at the 

signal frequency of interest,  but also by this same impedance at the idler frequency. 

This is exhibited explicitly by (3-29). 

III.4     Reciprocal and Nonreciprocal Equalizations 

To actually realize the gain in (3-29),  it is necessary to use an equalizer incor- 

porating a 3-port circulator since the   |s     |     must be made unity,  irrespective of 
2 

|s     |   .    The nonreciprocal structure is shown schematically in Fig. 7.    The circulator 

is used to connect the generator, the varactor and the load. A lossless reciprocal 2- 

port equalizer is placed between the circulator and the varactor, and a lossless filter 

is also shown (in dotted lines) which may be used if frequency shaping at the high fre- 

quencies is desired. 

Now we shall consider briefly the reciprocal equalization case.    If   N   is restrict- 

ed to be reciprocal,   S   must be symmetric and we can no longer adjust   | s     (j u) |     and 

|s     (jio)!      independently by using a circulator as the isolating element.    In this case 
33 12 

it can be shown       that 

K2(j"B)l < 
1   +|B33(J"S)| 

(3-30) 

and hence 

G.{u ) t     s 
1 + 

Z3(jU's) : ZD(j"s) 

(3-31) 
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Consequently,  for the same   Z  ,  optimum,  lossless,  nonreciprocal equalization yields 

at most  6 db more gain over optimum,  lossless,  reciprocal equalization.    This funda- 
12 mental result was originally derived for the tunnel diode case        and was found to be a 

general property applicable to any 3-port equalizer when one of its ports is paraconju- 

gate matched.     From this point on,  we will not discuss the case of reciprocal equaliza- 

tion any further,  because without the facility of using the circulator as the isolating ele- 

ment,   |sl2|   and   is     |   cannot be adjusted independently and the situation is quite com- 

plicated.    We shall consider only the nonreciprocal amplifier in which the ultimate 

transducer power gain is realized,  i.e.,    G  (u  ) = G (u  ),  and would be used interchange- 

ably in our subsequent work. 



CHAPTER    IV 

A  BROADBANDING   THEORY  FOR VARACTOR  PARAMETRIC   AMPLIFIER 

IV. 1     Introduction 

The broadbanding problem for a prescribed passive load and a resistive genera- 

tor was treated by Bode       and Fano. A new broadband matching theory has since 

been developed by Youla,       based on the prinr;Dle of complex normalization.    The new 

theory is applicable to the problem of designing an active equalizer incorporating an 

active impedance,   which is a prescribed function of frequency,  to achieve a preassigned 

transducer power gain working between a resistive generator and resistive load.    For 

the varactor parametric amplifier,  the varactor diode impedance is not prescribed in 

the sense that it depends directly on the impedance looking into the equalizer at the di- 

ode port.    In essence,   the equalizer and the active load cannot be treated independently 

because they interact with each other through the frequency-coupling action in the varac- 

tor.    We present in this section a broadbanding technique which takes this effect into 

full account. 

When the load,  passive or active,   is prescribed,  the transmission zeros of the 

load impose certain inherent restrictions which are reflection onto the transducer power 

gain function.    In the varactor problem,   since the load and the equalizer ai e interrelated, 

we cannot talk meaningfully about transmission zeros of the load,    instead,   we define the 

transmission zeros of the device as a whole which characterize the equalizer as well as 

the varactor load.    It is shown that these transmission zeros are specified from the pre- 

assigned transducer power gain function and that they again impose restrictions which 

are reflected onto the transducer power gain function. 

In Section IV.5,  the broadbanding technique is applied to the case where   u^ = 

u     u       and   Y   (iu ) = Y   (iu.),   and an illustrative design example is completely worked 
so   io 3       8 3       i 

out starting from the prescribed transducer power gain function (Appendix A).    A more 

exact theory applicable   to this case is presented in Chapter V.    The purpose here is to 

26 
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demonstrate that the general broadbanding theory does not only present a solution in 

principle.    In fact,  for the general case,  this is at present the only technique at our 

disposal.    Moreover,  although only the d. c.  capacitance   Co   is considered in this chap- 

ter, the broadbanding theory presented is valid for varactors with additional parasitic 

elements. 

IV.2     Analytic Extension of the Steady-State Transducer Power Gain Function 

In order to proceed with the broadbanding,  it is necessary to extend the steady- 

state transducer power gain expression to the entire  p-plane.    There are various ways 

of extending the variables   u     and   u. ,  since the only constraint to be satisfied is that b si 
iit real frequency 

ui     + u.   =  u s i o 
(4-1) 

where the pump frequency is prescribed.    Two possible schemes for the extension are: 

a)  Ju      and   j u.    are extended into   p   and   j "0" P.  respectively;   and   b)   j u)s   and   ji^ 

are extended into   ju     + p   and   Ju^-P.  respectively.    In the first case, the extension 

of   Z^Cju  ),   where   Z     is the impedance looking into the equalizer at the diode port. 
3*'   :. 
)o 
17, 

is a positive-real function and that of   Z3(ju.)   is a positive function (in the sense of 

Baum     ).    In the second case,   both extensions of   ZgUuJ   and   Z3(ju.)   are positive 

functions. 

Using the first scheme,  the diode impedance at the signal frequency becomes 

zD(p) 
P(PO-P)^C1Z3#(PO-P) 

(4-2) 

where   p    sju     and   f   (p)="f(-p)   for any rational function   f(p).    It can easily be 

shown that   Z     (p   - p) = Z(p   + p)   is a positive function.    It should be brought to at- 

tention that the impedance of a varactor embedded in a passive medium will,  in general. 
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not be a real function of   p   due to the frequency coupling inherent in the parametric de- 

vices.    It follows thst   G(u)   is in general not an even function of   u. 

The steady-state scattering formalism described in Section III.2 can be extended 

to the entire  p-plane.    In short, the complex normalization technique can be extended 

to the entire  p-plane by defining   a   (p),  b   (p),  and   S(p)   normalized to any prescribed 

set of rational,  non-Foster,  positive functions   z^p),  z2(p).  •••.   zn(P)   such as to pre- 

serve the rationality,  the unitary property of a lossless  n-port,   and the analyticity of 

S(p)   in the closed right-half p-plane.    This is summarized as follows: 

rk(p)  . 
zk(p)  + Zk*(p) 

rk(p)  =   hk*(p) hk(p) (4-3) 

2hk(p)ak(p)  =  Vk(p)  +zk(p)Ik(p) 

2hk+(p)bk(p)   =  Vk(P)   -zk;>(p)Ik(P) 

b (p)  = S(p) a (p)     , 

where   r   (p)   is said to be paraconjugate,  i.e.,   r     (p) = r   (p),   and the factorization of 

r   (p)   is such that   h, (p)   and   h, (p)/h     (p)   are analytic for   Re p > 0.    For matched 
k k k K* 

termination at port   k,   a   (p) = 0,   and for paraconjugate termination,   bk(p) = 0.    And 

'33 (P)  = 
h3(p) Z3(P) ' Z3^P) 

Z3(P) + 23(9) 
(4-4) 

will be analytic in   Re p > 0   provided the normalization impedances are non-Foster 

positive functions. 
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For the varactor device,   we shall retain the paraconjugate termination condition 

at the diode port,  i. e., 

^(P) = -zD»(p) = V-   ■ (4"5) 

P(PO-P),CIZ3(PO-P) 

but now   z   (p)   is not a positive function.    Hence,   the analyticity of   s33(p)   in   Rep>0 

will not be satisfied,  although the factorization of   r3(p)   is still valid.    We then modify 

the normalization scheme to 

2h, (p) a, (p)  =  V. (p) + 2. (p) I, (p)     . 

2hk(p)bk(p)   =  Vk(p)- z^{p)lk{p) 

Hence 
2 

(4-6) 

,(P)=        ^ 

ZAP) + zD(p) P(P0 - P)« C1 ~ Y3(p) Y3 + (P0 - P) 

33 "   Z3(p) - zD^p) p(Po . p)+ c2 + Y^) Y^ . p) 

(4-7) 

which is the analytical continuation of Eq.(3-27).    As expected,   s33(p)   is not regular 

in the right-half  p-plane.    The r,h. p. poles of   833 (?)   are due to the r. h. p. zeros of 

Z.,(p)-z      (p)   or   p(p   - p)Ä C^ + Y„(p) Y   (p   - p).    Note that if   p = p    is a zero of 

pvp   - p)    C2+Y   (p)Y   (p   - p),  then   p = -p    +ju     is also a zero.     8     (p)   may 

have poles on the  ju-axis (which will lead to a zero of   G(u)) ),   since 

W   (U    -u  ) C^   + Y„(jio  ) Y   (Ju    - ju )   =   0 .      (4-8) 
rori orou 1 

may have a solution for   u((j    -u)<0. 

Stability consideration restricts that 

Z3(p)  + zD(p)   i«  0 (4-9) 
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P(P, p)!jIC1-Y3(p)Y3^(po-p)  *   0 (4-10) 

for   p   in the closed r. h. p.      Consequently,  the only permissible r. h. p. zeros of   s_-(p) 

are those due to the r. h. p. poles of   Y   (p   - p).    Evidently,  if   p = p  ,   Re p   < 0   is a 

zero of   p(p   - p)   C   - Y   (p) Y     (p   - p), then   p = p    + j co     is also a zero.    Fig. 8 
O ™       i 0 O™       O K O 

shows some typical locations for the zeros and poles of   s     (p). 

Denote the strict r. h. p. poles of   s     (p)   by   p     and define the rational function 

b   (p),   which is not real for real   p,  by 

n       P - p_ 
b   (p) o TT 

r = 1    p + p 
He p     >   0 

r 
r =  I,  2. (4-11) 

Then   b   (p)   is analytic in   Re p >  0   and   b   (p) b  ^(p) = 1.    Thus 
o o o* 

s(p)  5   b   (p) s„„{p)   =  b   (p) 
O Oü o 

p(Po-p).Cl-Vp)Y3*(Po-p) 

P(Po-p)^+Y3(P)Y3(po-p) 
(4-12) 

is a rational function which is analytic in the strict r. h. p.,  having the same real fre- 

quency magnitude as   s     (p).    The transducer power gain   G(p)   is given by 

G(p) = 
p(Po-p)<.C1+Y3(p)Y3(po-p) 

p(Po-p)^-Y3(p)Y3+(po-p) 

p(Po-p),C1+Y3>)Y3,(Po-p) 

p(Po-p)^-Y3>)Y3(po-p) 
(4-13) 

and 

G(p) 
833(P) S33*(P) B(P)%<P) 

(4-14) 

valid in the entire   p-plane. 
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IV.3     Realizability Conditions and Factorizations 

We have shown that the transducer power gain of a lossless,  nonreciprocal,   3- 

port equalizer operating between a resistive generator and load with the third port ter- 

minated by the varactor is completely determined by the real-frequency magnitude of 

the rational function 

VP
)+Z

D
(
P>       P<P0-P)*<-Y  (P)Y    (p  -p) 

833(P)   =   Z   (p) - z      (p)   = 2 '       ' (4-15) 

3 D*P P(Po-p)*C?+Y3(P)Y
3^o-P) 

since   G (u) =   1/ ls33(jw)|   .    The purpose of this section is to delineate the realizability 

conditions of a prescribed transducer power gain function for this varactor jj^rametric 

amplifier. 

For   p = ju), 

4u»(w -M) C^ Be[Y  <ju)]   Be [Y.UW   - ju)] 
|s33(ju;)|      =1 ■           . (4.16) 

w(u)o- uj) Cj + Y3(ju) Y3(jiOo- ju)^ 

Because of the positive character of   Y  (p)   and   Y    (p   - p), 
3 3*    o 

ls,,(ju)|   <   1    . when        u)(w   - u)   >   0     , 

ls33(ju)|   >   1    . when        (j(u   - u)   <   0 

(4-17) 

This stems from the fact that    Re z   (ju)        0    for   io(u   - «»)  > 0   and   Re z   (iu)  < 0 
o o 3 — 

for   w(wo- u)  <  0   (see Eq.(3   17)).    Physically,  when the signal frequency equals or 

exceeds the pump,  there will be no gain.    Consequently, 

G(UJ)  >   1      , when        u(u)   - w)  >   0 
o 

Gdj)  <    1      , when        (j(io   - u)  <   0 
o — 

(4-18) 
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Furthermore,   since   G(u) = G((J   - u),   the prescribed transducer power gain function 

must be symmetrical with respect to u  /2.    Fig. 9 shows explicitly the permissible re- 

gions for the magnitude   G(u).    Transition points at   u = 0    and    u = w     and a possible 

shape satisfying the symmetry condition are also presented. 

From Eq. (4-13),   we obtain 

G(p) 
1 

B33(P)S33*(P) 

P(Po-p),C1+Y3(P)Y3(Po-P) 

P<P0-P)*C1-Y3(P)Y3*(P0-P) 

P(Po-p)<.C1-HY3i)t(p)Y3A(po-p) 

p(Po-p)+c2-Y3>)Y3(po-p) 

G(p) = 1 + 

'-G^)^ 

p(Po-p)*Cl [Y3(P) + Y3*(P)]  [Y3(Po-p)+Y3.(Po-p)] 

[p(P0- P), C\ - Y3(p) Y3,(Po- P)] [P(po- p)^- Y3^p) Y3(po- p)] 

P(PO-P),C; [Y3(P)+Y3I).(P)] [Y3(PO-P)+Y3]>(PO-P)] 

[p(P0- P)^ C^ Y3(p) Y3(Po- P)] [P(po- p)+ cj + Y3#(p) Y3,(po- p)] 

(4- ■19) 

(4- •20) 

(4-21) 

The above expressions infer immediately that 

and 

G(p)   = G^p)    , 

G(p)   = G;j<(po- p) 

(4-22) 

(4-23) 

Furthermore,  it can be shown from Eq. (4-21) that,  for   p = a + ju  /2, 

1 - 

9 U„     2 

Y3(a+^) + Y3(-a 
3U. 

G(a+^) 
u      2 9 J" JU 

(4-24) 

Therefore, 



\ 

33 

or,  alternatively. 

1   - 
1 

>   0 (4-25) 

]" 
G(a + )J       <   1 (4-26) 

for all real   a,   and zeros of   1 -   [l/G(p)]    on the   p = a + (ju  /2)   axis must be of even 

multiplicity. 

To sum up,  we have shown that a realizable   G(u)    must satisfy the following con- 

ditions : 

a) G (u) rational; 

b) li(ij) real function of   u; 

c) G((j) symmetrical with respect to   UJ  12; 

d) G(u) >0   for all real   u; 

e) G(u) >   1   for   u(u;   - u) > 0, 
— o — 

G(u))  <   1    for   w(w   - u)  < 0; 
— o - 

f) [G(CT+ ju  /2)]"     <    1  for all real   a. 

From  b),   G(ju) = G(jw);   hence,  G(p) = G:(<(p),   i.e.,   G(p) = G;{t(p)   if and only if   G(u) 

is a real function of   w.     From the symmetry condition  c),   G(j(j + (ju   /2)j  = G(-jw f 

(jio  12)]   =G(-j(J + (jw   12)),   or   G(ju) = G (-ju + (ju  12)).    By analytic continuation, 

G(p) = GJt(p   - p);    hence,   G (p) = Gv,(p   - p)   if and only if   G(io)   is symmetrical with 
*    o *     o 

respect to   w   /2. o 

Since   G(p)   satisfies   G)]i(p) = G (-p) = G(p),   G(p)   is paraconjugate.    From  d), 

any zero of   G(p)   on the real-frequency axis must be of even multiplicity.    By factor- 

ing its numerator and denominator polynomials into products of Hurwitz and anti- 

Hurwitz factors,  it is possible to write 
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G(p) = %(p>v^    ' (4-27) 

where   ^(p)   is rational and analytic in   Re p > 0   and   s^p)   is analytic in   Re p > 0. 

The factorized function   So(p)   is uniquely determined up to a constant scalar multiple 

e     .    The most general rational solution   s(p)   of the equation   G(p) = l/a(p) a   (p)   is 

given by 

s(p)   =   b(p) So(p)     , (4-28) 

b(p)   being a Blaschke product;    b(p)   is regular if and only if   s(p)   is analytic in 

Re p > 0. 

Using similar reasoning,   we can show from conditions  c)  and f) that   1 -  Q/G(p)J 

admits a factorization 

1   '    GTP)    
=    %ip)%*% - P)     ' (4-29) 

where   ^(p)   is rational and analytic together with its inverse in the half plane below 

the axis   p = CT + jUo/2.     The factorized function   ^(p)   is uniquely determined up to a 

constant scalar multiple   e^   and the most general rational solution   r,(p)   of the equa- 

tion    1 -  [l/G(p)J  = >)(p) n;jt(Po- p)   is given by 

r)(p)   =   d(p) ^(p)     , (4-30) 

d(p)   being a modified Blaschke product defined by   d(p) d   (p   - p) = 1.    Moreover, 

d(p)   may always be represented in the form 

if)       n               P - P 
d(p)   =   e^     JT      £— > (4.31) 

r=l    p+(-~Po-pr) 

and    |d((7 +J1JO/2)|     = 1;   hence,   d(p)   is automatically analytic on the entire   p = a -1- 

ju /2   axis. 
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IV.4    Broadbanding and Inverse Theorem for the General Case 

We can solve for   Z   (p)   from the expression (4-12) for   s(p)   as 

P) 
Z3(p) 

bo(p)[Y3(po-p)+Y3*(Po-p)]   .       VPo 

P(po-p)*C?  [bo(p) "8(P)] p(Po-p)*Cl 
(4-32) 

•       , 16 
Now, the above expression for varactor diode corresponds to the passive load case 

with   z   (p)   substituted-by   Yg (po - p)/p(Po - p).,, C^ .     In the passive load   z^p)   is 

prescribed,  whereas here it is directly related to the equalizer impedance to be de- 

signed.    Hence,  instead of using the above expression,  we must provide other means 

to solve the synthesis or inverse problem. 

To solve for   Y   (p)   in terms of the transducer power gain function   G(p) = 

l/s     (p) s        (p) = l/s(p) s   (p),  we proceed from Eq.(4-12) as follows: 

b   (p) - s(p)  =  b   (p) o o 
yp* [Y3(p

0-
p) + Y3^po-p)3 

P(P0-P)*c2l+Y3(p)Y3(Po-p) 
f        ' (4-33) 

bo*(Po " P) " S*(Po " P)  '   bo*(Po " P) " 

Y3^p
0-

p)   [Y3(P)+Y3*(P)]       1 

P(po-p)*Cl+Y3*(p)Y3*(Po-p)i 

(4-34) 

and,  when multiplying Eqs.(4-33) and (4-34),   and dividing by   1 - [l/G(p)J = 1 ~ s(p) s^p) 

of Eq. (4-21),   we have 

Y3(p) Y3*(po ' P) [b0(p) - B(P)] [b^^ - P) - s^ - p)] 

bo(p) bo])<(po - p)  [l - s(p) a^pij 
(4-35) 

P(Po ' P)* Cl 
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Now, 

G(p) 1  - 8(p) s^p)   =   r,(p) r)   (p    - p)      . 
*^o (4-36) 

where,   from (4-28) and (4-30),   S(P) = b(p) so(p)   and   r,(p) = d(p) ^(p).     8(p)   i8 de. 

fined by Eq. (4-12) and   ^(p)   is given by 

77(p)   =   b   (p)   < 
PC1   [Y3(Po-P)+Y3^P0-P>] 

[p(P0-p),cJ+Y3(p)Y3(Po-p) 
(4-37) 

Therefore, 

[b   (p) - a(p)l 
Y   (P)  -   PC      L0      .   . 1 

6 1 n(p) (4-38) 

Equations (4-35) and (4-38) serve as the starting point of the broadbanding theory to be 
presented. 

only if 
First of all,   we can ascertain quite easily that   Y3(p)   is real for real   p   if and 

bo(p) - s(p) n(p) 

and that   Re Y^ju) >  0   for all real   u   if and only if 

ju   j[bo(ju) - s(ju)J  n(jiü) -  jbo(jw) - s(ju))l r)(ju)|   >  0 

for all real   u. 

From Eq. (4-7),   and using   s (p) = b   (p)8-_(p), 
O o o 

b0(p) - s(p)  =  bo(p)   { 

Z3(P) - ZD,(P) 

(4-39) 

(4-40) 

(4-41) 
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we see that every pole of   z      (p)   on   Re p = 0   and every zero of   [^„(p) + Z
n+(P)J 

in   Re p > 0   must be a zero of   b   (p) - s(p).    It will be shown later that   b   (p) - 8(p) 

has only one intrinsic zero at infinity due to the presence of the d. c.  capacitance   C 

at the diode port, all the other zeros being characteristic of the combined effects of 

the equalizer and the varactor diode load.    Similarly, from Eq. (4-37),  zeros of   r)(p) 

in   Re p > 0   are restricted. 

Define a function   X (p)   by 

[Y3(p
O-

p)+Y3*(p
0-

p)] 
A(p)   =    b   (p)    1 —• ^  , (4-42) 

p(P0-p),C1+Y3(P)Y3(po-p) 

and denote any zero of   X(p)   in   Re p>0,   p    = a    +ju   ,   a    >0,   of multiplicity   k   , 

as a transmission zero of the device of order   k   .    Then each zero of transmission im- a 
poses certain restrictions on   s(p)   and   r)(p).    It will be shown that the restrictions on 

s(p)   and   r)(p)   at the transmission zero at infinity,   which in turn is reflected on  G(p), 

lead to the gain-bandwidth  limitation.    At present,   we can conclude that the multiplicity 

of transmission zero at infinity is at least one,  due to the shunt capacitance   C   . 

In essence,  we are given a prescribed transducer power gain function satisfying 

the realizability conditions we have presented earlier;   we wish to delineate further con- 

ditions such that   Y   (p)   given by Eq. (4-38) would be positive-real with the prescribed 

residue at infinity.    Although the function   X(p)   is not known from   G(p),  a]l the infor- 

mation on the location and multiplicity of the transmission zeros,  p   ,  is specified from 

the prescribed transducer power gain function (see Eq.(4-21)).    It should be noted that 

b   (p)   as defined previously is the regular Blaschke product formed with the strict r. h. p. 

poles of   s     (p).    But now   b   (p)   as defined originally cannot be obtained from the pre- 

scribed data;   instead,   we shall specify   b   (p)   to be formed from the poles of   G(p)   in 

the upper right quadrant bounded by the   p = ju   and   p = o + ju  /2   axis.    Then   b   (p) 

is uniquely determined,  but it is,   in general,   not the Blaschke product that renders 

s   ,(p)   analytic in   Re p > 0. 
Jo 
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Each zero of transmission imposes certain restrictions on   s(p)   and   rj(p)   which 

are reflected onto   G(u).    To formulate these restrictions quantitatively,  let us repre- 

sent the power series expansions of   bo(p),   s(p),   r)(p)   and   X(p)   about   p     by 

i = 0 

00 

S(P) = ^ Aö(P- P y , 
i = 0 a 

00 

nip) =    Z    N"(p- pj   , 
i- 0 

and 

MP) =   ^  N<P-PJ   , 
i = 0 

where    |p   |    is finite.    In addition,  represent 

^p)= E  ^(p-pj   . 
i = 0 

00 

b(p) = ^  »"(p - P y , 
i = 0 

00 

i = 0 

and 

(4-43) 

i= 0 

(4-44) 

d(p) = 2 dr(p - pj1 • 
i = 0 

For    |pal  = <*>.   <P " PQ)   is to be replaced by   l/p   and coefficients are   A*   B", N". 
i'     i'     i 
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etc.    From   s(p)=b(p)s   (p)   and   r)(p) = d(p)r)   (p), then   Ai   and   Ni   can be repre- 

sented as Cauchy products as follows: 

A"   =      V      aaba        . (4-45) 
i u-       r    i-r 

r = 0 

and 

N0=      V      nad0        . (4-46) 

From the prescribed   G(u),  B. ,  a.    and   n.    are known,  and   b.    and   d.    are to be de- 

termined using the restrictions on the coefficients to be derived. 

We now formulate the restrictions according to the location of the transmission 

zeros: 

1.    Transmission zeros in the strict r. h. p.   of order   k  ,   a   > 0   (due to the strict 

r. h. p.  zeros of   [YO^PQ " P) + Y3*<P0 ' P^l    of multiplicity   M: 

I     B^P-P/-    I     Af(p-Pa)i  =  V3(Pa)     I     ^(P-P/     . 
i=0 i=0 i=0 

I      N^p - p/   = pa C1     I     X^p - p/     , 
i = 0 i = Ü 

)ia  =   0     , i =  0,   1,   . ..,   k   - 1 
i a 

Therefore, 

B" =   Aa   ,        i =  0,   1,   . ..,  k   - 1 
11 a 

N" =>  0     , i =  0,   1,   ...,  k   - 1 
i o 

(4-47) 
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2.    Transmission zeros  at   p = iu     of order   k   .    u     < 
■        a a'   '   a' 

(a)   If   Y   (p)   has a zero at   p = ju   , then 

I     B^p-jw/-    I     A^p- j^y«  p'iw )(p- ju )"]    I     Xf^-ju)1    , 
i = 0 i = 0 ^ -li = 0 

I   tfip-iuj - u^S   I  ^(P-J"/   • 
i = 0 i = 0 

xa - 0 
i 

i = 0,  1, . . . , k   - 1     , 

^here        Um      Y   (p)/(p-ju  ) = /J'(w ).    Therefore, 
0 oi a 

B.   =   A. 

N.    =   0 

i = 0,  1, . . . , k 

1=0,  1, , k   - 1 
a 

(4-48) 

in addition,   by dividing 

one obtains 

\^-K+l = ^"X  < 

Nk     ■J"«0!^ 

Jw„ 

Bk   +1   "   Ak   +1 
a a ß (u)  ) 

a 
>   0 (4-49) 
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(b)   If   Y3^   'las neither a pole nor a zero at   p = jw   ,  then 

a a 
B.   =  A 

i i 

a 
N.    =  0 

i 

i = 0,  1, .... k   - 1     , 

i = 0,  1, .... k   - 1 
a 

(c)   If   Y   (p)   has a pole at   i u   ,   then 
J a 

00 .00 

2     B"(p- jUa)    -    £     A^p- j^)1 

1 = 0 1 = 0 

r Q^a) 
P - Jw 

(4-50) 

E    X°<P-iMa>      . 
1 = 0 

«J 00 

Z    ^ (p - iwj1 MjWa) Cj    2    ^(p-jw/    . 
1 = 0 1 = 0 

^i   =  0     , i = 0,  1 k   - 1     , 
1 a 

where   a(ua)   is the residue of   Y   (p)   at the pole.    Therefore, 

a 
N.    =   0 

i 
1 = 0,   1, .... k   -  1 

or 

In addition,  by dividing 

\   -1   -   Ak   -1   =a(Ua)Xk       ' 
a a a 

K -^a
)cixl • 

(4-51) 

one obtains 
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J" 

k   - 1 
a 

N, 

a(Wa) 
>   0 (4-5^) 

From the prescribed transducer power gain function,  we would not know,   a priori,  which 

of the above cases will apply.    It can be shown,  by examining conditions (4-48), (4-49), 

(4-50), (4-51) and (4-52),  that the following restrictions 

B.    =  A. 
i i 

N.   =   0     , 

and 

J" 

k    - 1 k    - 1 
>   0 

(4-53) 

will suffice. 

3.    Transmission zero at infinity of order   k 

i   1 ^ ,   i I,1 

I     B^i)    -    X     A0O(-1)    =  pC       I     X?0(i) 
i = 0 1 = 0 i = 0 

1  i oo, I,1 

s Nr<?> -^i i \w<i) . 
i = C i = 0 

\     =  0 i = 0, 1, ..., k   - I 
00 

Therefore, 

B00  =  A00     , I = 0, 1. .... k   -2     , 
11 '       00 

N.     =   0        , i = 0,  1, ..., k   -2     , 
1 00 

(4-54) 
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B* -A"     ,  - C   X* k-1 k-1 ok 
00 00 00 

K-^c^: 
one obtains 

Bk    -1 
00 

A00 
Ak    -1 

00 C > 
c o 

K - 1 
Cl Cl 

(4-55) 

where   C > C   . 
-     o 

Conditions (4-47), (4-53) and (4-54),  when coupled with relations (4-45) and (4-46), 

can be used to determine   b(p)   and   d(p).    Thus,  by using the above information,  we can 

obtain the gain-bandwidth restriction from the condition (4-55) and also,  at the same 

time,   completely solve the inverse problem starting from the prescribed transducer 

power gain function.    In summary,  the necessary and sufficient conditions are presented 

in Theorems  1 and 2. 

Theorem 1; 

Let   z   (p) =  - l/p(p   - p)ft C.  Z      (p   - p)   be the impedance of a varactor diode in 

an inverting parametric device,   where   p    sju     is the pump frequency and   Y   (p)   is 

the input admittance looking into the equalizer at signal frequency at the diode port with 

ad. c.   capacitance    C      shunting the port;   and let   b   (p)    be a regular all-pass formed 

with half of the right half plane poles of    l/G(p)   in the upper right quadrant bounded by 

the   p = ju   and   p = a + (j u   /2)   axis.    Then Eq8.(4-33) and (4-37) define a rational 

positive-real function   Y   (p)   with residue at infinity not less than the prescribed   C 

if and only if; 

1)     8(p)   and   rj(p)   at i- rational functions of   p   satisfying the following conditions; 



44 

(a) (s(ju)|   <  1.        for W(U)   - u) > 0 

|8(ju)|   >  1 for lo(u    - w) < o 
o — 

(b) 
bo(p) - s(p) r)(p) 

bo*(-P> -%(-?)   "'   r,A-p) 

(c) jw |[bo(jU) - S(jw)j „(ja) - po(JM) . i(ju)J ^^j 1    ^ 0 

for all real   u . 

2)    Any strict right half-plane transmission zero,   p    = a    + j«   .   a    > 0,    of 

multiplicity   ka   must be a zero of both   b   (p) - 8(p)   and   "(P) ^f at Teast^rder   k 
i.e., a 

Ba=   A0 

N.    =   0 

(i = 0, 1 k   -1)     , 

(1 = 0, 1 k   - 1)     . 

3)    Any finite   jw   transmission zero,   Pa = JV   |UJ < oo,  of multiplicity   k 

must be a zero of both   b   (p)-8(p)   and   „(p)   of at least order   k        ie 
a ' 

oi         a 
Bi   =   A.      . (i = 0,  1 k   -2)     , 
Al Of * 

a 
N.    =   0 

i U » o, i k  -1)    . 

and,  in addition. 

J" 
V-i - A

k -i 
N. 

>   0 
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4)    The tranemission zero at   p = «   of multiplicity   k     must be a zero of both 
00 

bo(p) - 8(p)   and   r7(p)   of at least order   k    -1,   i.e., 
oo 

r.00 A
00 

B;    =   A       . d = 0,  1 k   -2)     , 

and,   furthermore. 

N,    =   0       , (i = 0,  1 k   -2) 

B00 -   A00 

k   -1       Ak   -1 ^ c 
"Q oo C o 

where    C >   C 
o ' 

Proof:        Necessity:   already shown. 

Sufficiency:    Using Eqs. (4-33) and (4-37),  we have 

Y,(P)  =  p C 
b    (p) -  B(p) 

o 

rv' ' pv-i   —^)—  • <4-38> 

From condition   1),   we know that   Y3(p)   is rational.    It follows from   l)(b)  that   Y   (p) 

=   Y(p),   thus the reality of   Y3(p)   is established.    And from   l)(c)  we see that Eq. 

(4-38) always defines a   Y3(p)   with non-negative real part on   p = j u. 

Condu.ons   2),   3)  and   4)  guarantee that   Y^p)   is analytic in   Re p >  0   and has. 

at most,  simple poles on the finite  juj-axis   with a non-negative residue,   and a simple 

pole at   p = oc    with at least the prescribed residue   C 
o ' 

Theorem 2: 

The real rational fun.-tion of frequency   G(u),   which is symmetrical with respeci 

to   Uo/2,  is realizable as the transducer power gain of an inverting parametric device 
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depicted in Fig. 7 if and only if: 

1)     (a)    G(u)   >   0     for all real   u, 

(b)    G(u)   >   1     for     u(u    - u)  >   0     , 

G{w)   <   1     for     w(u    - u) <   0     , 
— o — 

(c) n(a+-   ) 

-1 

<    1     for all real   a: 

2)     The function   1/G(p)   admits a factorization of the form 

GTP) '- S
<P)

S
*<P)   ' 

and the function    1   -  |l/G(p)|    admits a factorization of the form 

1 ■  G (^j   =   ^ "^Po " p> 

in which   s(p)   and   r](p)   satisfy conditions   l)-4)  of Theorem 1. 

Proof;        Necessity:   already shown. 

Sufficiency:   Given conditions   I)   and  2),  from Theorem 1  the function 

Y   (p)   as defined by (4-38) is positive-real with a residue at infinity not less than   C 
-1 " 0 

According to Darlington's classical theorem,   Z   (p) = Y_   (p)   may be synthesized as 

the input impedance of a lossless   2-port terminated in a resistor. 
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IV.5     Broadbanding and Inverse Theorem for the Case   u  w. = u    u.     and 
" 8    1 HO    lO 

v^v^ 
In this section we shall treat the case where the assumptions that   u  u. = w     u. S   1 so   xo 

and   Y   (ju ) = Y   (ju.)   hold.    A more complete treatment of this case is presented in 
OS Ö X 

Chapter V,  where the exact gain-bandwidth limitation is obtained directly from the pre- 

scribed gain function without resorting to the factorization technique essential for the 

general case.    The purpose here is to demonstrate that the broadbanding theory de- 

scribed in the previous section is not just a solution of the inverse problem in principle, 

but actually can be employed to determine the gain-bandwidth limitation and to obtain 

the synthesis for broadband parametric amplifiers.    Since the procedure for this case 

is analogous to that of the general case,  we shall summarize the pertinent results here. 

Invokine both the assumptions,    u   u. = u     u.      and   Y_(ju  ) = Y_(ju), 6 r si        so   10 3s 3i 
|s„„(ju)|     <  1   and   G(Iü )= l/|s     (ju)|2   is an even function of   u.    Letting 

33 33 
Y = Y,/ yu     u.      C, , 

3   v   so   10      1 

b)      u).    C2.   -  YI(P)                      1   -  Y2(p) 
8„(p)   =    ^^_1 L__    =          . (4-56) 

"so^io0!   +Y3(P)Y3*(P) 1  + Y(P)Y*<P) 

where   Y   (p) = Y(-p)   since   Y(p)   is positive-real.    From stability considerations, 

Y(p) ^ 1   for   Re p >0;   hence,  the only permissible r. h. p.  zeros of   SQQCP)   
are due 

tother.h. p.  poles of   Y^p).    Moreover,  we note that   1 + Y{p) Y^Cp) ^ 0   on the en- 

tire   p = ju   axis.    The strict r. h. p.   poles of   s„«(p)   are due to the strict r. h. p. zeros 

of the even function   1 + Y(p) Y^Cp). 

Denote the strict r. h. p.  poles of   s     (p)   by   p = p ,  r = 1, 2, . . ., n,   and define 
»jo r 

the regular Blaschke product (real for real   p) 

n      P - Pr 

b0(p) =   TT   —z'   ■ (4"57) 

r = 1    p + p 
r 
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Thus 

s(p)  =  b   (p) B,,(p)  =  b   (p) 
O u o o 

i - Y"(P) 

1 +Y(p) Y.(p)J 
(4-58) 

is a real rational passive scattering coefficient.    Furthermore, 

1  - 
1 

G(-p ) 
—   =    1  - s(p) a^ip)  = 

Y(p) + Y^p) 

1 + Y(p) Y+(p) 
(4-59) 

and 

where    A(p)   is defined by 

Mp) =   /l 
1 

G(-p  ) 

Y(p)|bo(p)A(p)[ 

(4-60) 

(4-61) 

Note that every zero of   X(p)   in   Re p > 0   must be a zero of   bo(p) - s(p).     De- 

note any zero of   Mp)   in   Re p > 0,   Pa = CT
a 

+ J V   CT
a>

0'   of multiplicity   ka   as a 

transmission zero of the device of order   k    .    It should be noted from Eq. (4-59) that 

]  .   [l/G(-p2)]    is a perfect square of an even function of   p;   the square root operation 

corresponds to the factorization of   1 -   [l/G(p)]  = r)(p) I^P^P)   in the general case. 

In this special case,  in addition,   the function   A(p)   can be obtained from the prescribed 

G(p). 

As in the general case,  we can only consider the zeros of transmission of the de- 

vice since the equalizer and the varactor diode (which takes the place of the load in the 

passive matching problem) are completely tied together.    All the transmission zeros 

are due to the combined effects of the equalizer and the varactor diode except the trans- 

mission zero at infinity where the multiplicity is at least one due to the presence of the 

shunt capacitance   C  .    In contrast with the general case,  now   bo(p)   is uniquely deter- 
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mined up to a plus or minus sign from the prescribed   G(u  );   b   (p)   being a real regu- 

lar Blaschke product formed from the strict r. h. p.   poles of   l/G(-p )   with half of their 

respective multiplicities. 

Represent the power series expansion of  b   (p),  s(p),  X(p),  s   (p)   and   b(p)   in 

the neighborhood of the zero of transmission,   p    = a   + jw   ,  as in Eqs.(4-43) and (4-44). 

From   8(p) = b(p) ao(p),  where   s   (p)   is the minimum factorization of   l/G(-p ),   the 
a 

coefficients   A.    of   s<p)   can be expressed in terms of 

I 
r = 0 

a , a 
a    b. 
r    i - r (4-62) 

From the prescribed   G(io ),  V  ,   B.    and   a.    are known,  and   b"  would be determined 

using the conditions on the coefficients to be derived. 

The restrictions are summarized as follows: 

1.    Transmission zeros in the strict r. h. p.   of order   k   .   CT    > 0. 
a        a 

„<*        .a 

B.    =  A. 
i i 

i = 0, 1, k (4-63) 

2.    Transmission zeros at   p = i UJ     of order   k   .   ID   I < 
ff a'   '   a' 

(a)   If   Y(p)   has a zero at   p = ju   ,  then 
a 

B.    =   A. 
i i 

i = 0, 1, . . ., k 

Bk   +1   -  Ak   +1 a a 
>   0 

(4-64) 

(b)   If   Y(p)   has neither a pole nor a zero at   p = iu   .  then 
a 

i = 0, 1, . . ., k   - 1     . B.    =   A. 
i i (4-65) 
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(c)   If   Y(p)   has a pole at   p ^ j u   ,  then 

oc a 
B.    =   A.      , i = 0,  1. . . . , k   - 2 
ii a 

ßk   -1        Ak   -1 
a 

a 

a(u  )   >   0 
a 

2 
From the prescribed   G(u)  ),   we would not know which of the above three cases will ap- 

ply.    It can be shown,   however,  that the restrictions 

. a 
B.   =   A.      , i = 0,  1, . . ., k   - 2     , 
ii a 

Bk   -1   -   \   -1 
a a 

a 
\ a 

will suffice. 

3.     Transmission zero at infinity of order   k 

M . 00 

(4-67) 

>   0 

00 

B     =   A.       , i  - 0,  1,  . . . ,  k   - 2     , (4-68) 
11 on 

k    - 1 k    - 1 C 
oo oo C O 

^. yü    w,   c       TUT" u~ c, 
K v     SO      lO 1 •     SO      lO 1 

(4-69) 

Conditions (4-63),  (4-67) and (4-68),   when coupled with the relation (4-62),  can 

be used to determinp    b(p).    Thus,   using the above information,   we can obtain the gain- 

bandwidth restriction from (4-69) and,   at the same time,  complete the synthesis from 
2 

the prescribed   G (u  ).    The results are summarized in Theorems 3 and 4 and an illus- 

trative example is completely worked out in Appendix A. 
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Theorem3:      (Assumptions:     u   u. = u     u.       and   Y„(ju  ) = Y„(iu).))   si       so  10 3       s 3       i 

2 
Let   z    (p) = - 1/u     w.    C, Z„(p)   be the impedance of a varactor diode in an in- u so   IO    1     3 

verting parametric device,  where   Y   (p)   is the input admittance looking into the equal- 

izer at the diode port with a d. c.  capacitance   C     shunting the port;   and let   b   (p)   be 

a real,  rational,  regular Blaschke product formed with the strict right half-plane poles 
2 

of   l/G(-p )   with half of their respective multiplicity.    Then Eq. (4-60) defines a ra- 

tional positive-real function   Y   (p)   with residue at infinity not less than the prescribed 

C     if and only if o ' 

1) (a)     B(p)   is a real,  rational,  passive scattering coefficient, 

2 
(b)     1 - s(p) s^p) = f   (p),   f(p)   real rational; 

2) Any strict right half-plane transmission zero (strict right half-plane zero of 

X(p)),   p   = a   + ju   ,   a   > 0,   of multiplicity   k     must be a zero of   b   (p) - s(p)   of at 

least order   k   ,  i. e., a 

a a 
B.    =  A.      , i = 0, 1, ..., k   - 1     ; 

1 1 '    ' '    a 

3)   Any finite   jw  transmission zero,   p    = ju   ,   \u   | < no,   of multiplicity   k 

must be a zero of   b   (p) - s (p)   of at least order   k   - 1, i.e., o a 

a a 
B.   =  A.     , i = 0, 1, . . ., k   -2 1 1 or 

and,  in addition, 

Bk   - 1   -  Ak   - 1 a a 

a 

>   0     ; 

4)   The transmission zero at infinity of multiplicity   k   , where   k     is even and 
0O 00 

k   - 2   equals the order of zero of  Y(p) + Y%t(p)   since     Y(oo) = oo,   must be a zero of 
00 * 
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t>0(p) - 8(p)   of at least order   k   - 1,  i. e. 

Bi    =  A-      • i - 0,  1, ..., k   -2 

and,  furthermore. 

k   - 1 k   - 1 
 00  00 

^  
00 

c 
o 

^To c
1   ' J^\0 c, 

Proof:        Necessity:   already shown. 

Sufficiency:    From  Eq. (4-60),   solve for   Y (p) as follows: 

^(p) - s(p) 
Y(p)   = 

b (p) Jl  - S(p) s   (p) 
(4-70) 

For sufficiency, we need to prove that conditions 1)- 4) imply that Y(p) is positive- 

real with residue at infinity not less than C y/uT^T C^. From conation 1), Y(P) 

is a real and rational function of   p.     From Eq.(4-70),  it follows that 

b   (p) - s(p) b     (p) - s   (D) 
Y(p) + Y. (p)  =    2__ + °*W       *W 

bo(p) yi - s(p) s^(p)    boi(<(p) /rriip) 6+(p) 

2 - s(p) bo^(p) - s+(p) bo(p) 

/i - S(P) s^p) 

äince   bo(p) bo + (p) = 1.    Therefore,   from condition   l)(a). 

Re Y(ju) 
1 "  2   fsU") b   (ju) + s(ju) b   (ju)! 

u) =   — —.  0        J 

/l -  |s(ju)|2 

>   0 
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Hence,  Eq.(4-70) always defines a   Y(p)   with a non-negative real part on the  ju-axis. 

It follows from 2) that   Y(p)   is analytic at every strict right half-plane transmis- 

sion zero.    At a   jw   transmission zero, it follows from 3) that   Y(p)   has at most a 

simple finite   ju   pole with a non-negative residue.    And,  finally,  from  4) it follows 

that   Y(p)   has a simple pole at   p = oo   with residue greater than or equal to the pre- 

scribed value   C   //ui     U.     C,. o       so   IO      1 

To sum up, it follows from 1) - 4) that Y (p) has a non-negative real part on 

p = j u, is analytic in Re p > 0 and has at most simple finite j u poles with a non- 

negative residue,  and has a simple pole at   p = oo   with at least the prescribed residue 

C   . 
o 

Theorem 4:     (Assumptions:    u   u. ~ u     u.       and    Y   (jw ) = Y   (ju )) 
 — S    1 SO    IO o B o 1 

2 
The real,   rational,  even function of frequency   G(u )   is realizable as the trans- 

ducer power gain of a varactor inverting device represented by Fig. 7 if and only if 

1)    (a)    G(w ) > 1     for all real   u, 

(b)   1 -  [l/G(-p2)]     is a perfect square of a real,  rational,  even function of p; 

2 
2)     The function   l/G(-p )   admits a factorization of the form 

s(p) s   (p) 2 >rw    *' 
G(-p  ) 

where   s(p)   satisfies conditions   1) - 4) of Theorem 1. 

Proof :      For the proof of Theorem 4, refer to the proof of Theorem 2 in Section IV.4. 



CHAPTER    V 

FUNDAMENTAL GAIN-BANDWIDTH  LIMITATIONS  OF 

OPTIMUM SINGLE-VARACTOR  PARAMETRIC  AMPLIFIERS 

V.l     Introduction 

1 H 
It is generally known       that by using more complitaled coupling networks,   wider 

bandwidths can be achieved than the conventional single-tuned parametric amplifier. 
19 

Recently,   Matlhaei       described a procedure for achieving a varactor amplifier with 

large bandwidth by designing wide-band signal and idler "equal-ripple" bandpass filters 
20 21 

nround a given varactor.    More recently,   Aron       and Kuh       have presented some re ■ 

suits on the fundamental gain-bandwidth limitations of a varactor parametric amplifiet 

They have found that by using a high-gain approximation the parametric amplifier may 

be treated wah complete analogy to the tunnel diode. 

The high-gain approximation used in References 20 and 21 is essentially an ideal- 

ization which assume that   Y(p) = Y„(p)//Ü)     u       C,  =  1.    Thus,   the scattering coeffi- 
3 so   IO       1 

cient at the diode port is given by 

instead of  Eq.{5-24),   which is quadratic in   Y(p).     With this .ipproximation the problem 

reduces to that of equalizing a tunnel diode-like device.    Although both tunnel diode ami 

varactor are two-terminal active devices,   the mechanism of achieving amplification is 

inherently different.    For varactor,  amplification is obtained through frequency coupling. 

As a result,   an inherent property of a varacto1   device is the quadratic nature of the ex- 

pression of the scattering coefficient at the diode port.    A direct consequence of this 

property is that the usual Butterworth or Tchebycheff response is not realizable as n 

transducer power gain function of the varactor- amplifier. 

54 
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 In Section V.2 we obtain an optimum gain-bandwidth upper-bound for the case 

u   id  ~ w     u    .    This is a theoretical limitation which may be used as an estimate of 
si        so   io 

the optimum gain-bandwidth which cannot be exceeded.    In Section V.3 we derive an 

exact optimum gain-bandwidth limitation when the additional assumption   Y3(jus) = 

Y   (jw.)   is invoked.    For an ideal flat response,  the optimum gain-bandwidth limita- 
■i 1 

tion is derived as 

2 
G ... a  cosh 

T MAX 

Ju    u).      C v   so   io      1 
ui   C c    o 

Finally, modified forms of Butterworth and Tchebycheff response function are applied, 

both of which approach the flat response over the prescribed band as the order of these 

responses is increased. 

The assumption that   YAjv  ) = Y„(ju.)   can be realized only approximately by 
os o       i 22 

using a low-pass to multiple band-pass frequency transformation defined       as follows: 

(X2 + u2  ){\2  + J2 ) so io_ 
p  =    5 2 ' 

X(X    + ui   ) 
00 

where   w       and   u      are the respective signal and idler band center frequencies,   and 
so io 

2            2 
u      + u. 2           so          io 

u    s    5       . 
00 <s 

and   p   and   X   denote the low-pass and band-pass variables,  respectively. 
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V.2     Derivation of Optimum Gain-Bandwidth Upper-Bound for the Case   u   w   = w     u    si        so   io 

For the case   u   u. ^ u     u.   ,  the scattering coefficient at the diode port simplifies s    i so   10 i- r 
to 

S33(P)   ' 

U
3o"ioCl-Y3(p)Y3*(Po-p)    B    1-Y(P)Y.(P0-P) 

"so "io Cl + Y3 (P)  Y3 (Po "   P) 1 + Y (p) Y (po -  p) 

(5-1) 

where   Y (p) 5 Y, (p)//u      u.      C,.    Stability consideration restricts that   Z   (p) + z    (p) 
3 so   io      1 3 D 

t 0    or     1  - Y(p) Y^{p    - p) )f 0   for   Re p > 0.    Let 

8(P)   5 
1  - Y(p) 
1 + Y(p)     ' Y(p) 

1 - s(p) 
1 + s(p) 

(5-2) 

then 

G(p) 
S33(P)S33*(P) 

1 + s(p) s(p    - p) 

s(p)   + S   (p    - p) 
^     o 

1 +s^P)s^{Po-P) 

B^ip)   + 3(Po - p) 
(5-3) 

It can be shown that    1 + s(p) s(p    - p)   has no zero or pole on the entire   p = j u 

axis and its zeros and poles exhibit the following symmetry;   If   p = p     is a zero or pole 

of   1 + s(p) i(p    - p),   then   p = - p    + p     is also a zero or pole.    Hence,   1 + s(p) i(p  -p) 

admits  the   factorization  in  the  form    f(p) f(p   - p),    where    f(p)    is  restricted to be 

analytic  together   with   Us   inverse   in  r. h. p.,   and the  minimum  factorization   f (p)   is 
J0 

unique up to a constant multiple   e Therefore, 

G(p) 
f(p)f(Po - p) 

s(p) + s)!t(po - p) 
yp' f^Po - p' 

s . (p) + s(p    - p) 
* o 

5    g(p) g^P) (5-4) 

In the final factorization of   G(p)   into   g(p) g^P),   there is a unique choice for   g(p) 

when the   restrictions    g(p)    and    g     (p) ,    both analytic  in  the   strict  r.h.p.,   are  in- 

voked.    Noting that zeros of   s(p) + s   (p   - p)   are all in the strict 1. h. p.  from stability 

consideration,  we can conclude that 
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g(p) 

f(P)f*(P0-P) 

|[3(P)+VP0-P)] 
(5-5) 

Now we proceed by relating the behavior of the factorized functions f(p)  and g(p) 

about   p = oo   with that of   s(p).    From the fact that about   p = oo, 

Y3(p)  =  pC + y3(p)     , (5-6) 

where    C  > C      and   y„(p)    is  an  arbitrary  positive-real function which is  finite  at 

p = oo   (for convenience, take    C = C  ),   the expansion of    s(p) = 1 - Y(p)/1 + Y(p)  = 

Ju      u~    C,  - Y„(p)/>/u      w-   C,  +Y0(p)   about infinity is given by "soiol 3v80iol 3 

Al       A2 1 
S(p)   .   .1+ +_+o(-)     , 

P P 
(5-7) 

where 

2 Ju      ioT   C, v   so    ID      1 (5-8) 

and 

A.       y,(») 
_i + _i  

2 C 
(5-9) 

Let the expansion of   f (p)   about   p = oo   be denoted by 

Bl       B2 1 
f(p)  =   B^ + — + -^ + 0(--)     . 

o        P p
2 p3 

(5-10) 

Since the expansion of   f(p) f (p   - p)   about   p = oo   must agree with that of  — [l + s(p) 
O ä 

s (p   - p)3,   the following relations are obtained by equating coefficients of like powers 

of    1/p: 
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Bo  =   1     ' 

Bl + BoBlPo-2BoB2   =   l<4+2A2-A1Po) 

(5-11) 

From Eqs. (5-5),   (5-7) and (5-10),   we have 

g(p) 
f(P) ^(P,  - P) 

| \s{p) +S!>(Po- P)] 

1)   iRo + p[2Bo(HeBl)]^   [iB.^^B^R (-1) 
e B„) + B   B 2 o 

l.l(Ai)-  A(A2 + |AiPo) + ._ 
P 

.d 
(5-12) 

and the expansion of   g(p)   about   p = oo   is given by 

!(p)   =   - l<j   1 + -   rA1 + 2 Bo (Re  B ^  + 0{? )*> (5-13) 

where,   according to (5-11),    B    = + 1 
o     — 

The function   f(p),   as defined by the minimum factorization of the equation 

- [l + s(p) s(po - p)] = f (p) f (PO- p),   is a bounded scattering coefficient which is uni- 

tary  at   p = «.    It is shown in Theorem 6 (Appendix B) that if   B     is real   then   B 
o i 

must also  be real and,   more importantly,   the product   Bo B     must be of negative sign. 

Imposing the condition that   Bo B1 < 0,  the residue of   g(p)   at   p = «j   is given by 

A    +  2B    B, 
1 o     1 2 IB^  < A1 (5-14) 

where   A1 = 2 y/uT^ u^   Cj/^    and is independent of the equalizer.    Note that   G (u.) = 

|g(ju)|      and   g(p)   is without zero or pole in the entire right-half p-plane.    Using cal- 

culus of residue,   we obtain 
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+ « 
J      In G(u) dw  =   2 7r  [A   + B   (B    + B  )"] 

=   2^  [AJ^IBJ] 

Jw      ü-   C, 
»    SO     lO 1 

<   47r (5-15) 

which is an optimum gain-bandwidth upper-bound.    The conclusion to be drawn from 

(5-15) is that the optimum gain-bandwidth is bounded by a quantity that is completely in- 

dependent of the equalizer.    As far as practical utilization is concerned,  Eq.(5-15) can 

give us some estimate of the optimum gain-bandwidth which cannot be exceeded but,  on 

the other hand, we have shown in Theorem 6 that   |B   |  ^0,  i.e., the gain-bandwidth 

upper-bound given in (5-15) cannot be attained. 

If we impose the additional assumption that   Y   (ju ) = Y   (ju.), then the transducer 

power gain function is an even function of   u   and (5-15) becomes 

00 2 r 
/   in G(u ) dw  =   TT    A    - 2 |B   | <    2 TT 

Ju      u~   C, v    SO     10 1 
(5-16) 

It is interesting to note that the result (5-16) was originally proved in our study for 

equalizers of low complexity by evaluating the r.h. p.  poles and the permissible zeros of 

s     (p)   =  s     (p) 
33 33 Y(p) 

1 - Y^p) 

1 +Y(p) Y   (p). 

VP) 
L Y(p) (5-17) 

Let 

Y(p) 
a    p     + a     , p 

n n-1 
n-1 

+ . . .   + a, p  + a 
1 o 

u n    J.    1. h     , p    + b    „ p n-1 r n-2 K 
n-2 

+ ...   + b, p + b 
1 o 

(5-18) 
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and let     £    (p^)   and     ^     (p )   denote,  respectively, the sum of the r. h. p. poles 
r» 1 k= 1 

and permissible r.h. p.  zeros of   ä33(p);   then it can be shown that 

2 
f    in G(u)  ) du  =   2 TT 

o 

1 
E,   (Pr) -     Z^   (Pk)|     . (5-19) 

r=l k=l 

where   ^ (Pr)   and   ^(p^   can be expressed as functions of the coefficients   a's   and 

b's   of   Y(p).     By imposing the positlve-reaüty and stability restriction on these coef- 
ficients,  we were able to prove for   n = 1, 2, 3   that 

n n Jü ^~ c, 
V i „ \ V , ^ , , v so IO 1 
L    (Pr> -    L    (Pk)   <    pr-       . (5-20) 

r=l       r        r=l       k C
0 

Clearly,  this method cannot be generalized for arbitrary   n   since it involves the finding 

of the sum of the r. h. p.  roots of an even polynomial of degree 2n   in terms of its coef- 

ficients.    The approach we used in proving the optimum gain-bandwidth upper-bound 

completely circumvents this difficulty and the result holds for arbitrary equalizers of 

any degree of complexity. 

V.3     Exact Optimum Gain-Bandwidth Limitation for the Case   u   u=u      u        and  ^ . . .        si       so    io 

VJ^V^   

We shall now assume that   u    w   ~ u)      u.       where   u        and   y.      are the respective 
ox a\}     xu go IO 

band center frequencies and that   YgCjw^ = ^(jw^.  which can be reaUzed approximate- 

ly by using a low-pass to multiple band-pass frequency transformation discussed in Sec- 

tion V.l.    With these two assumptions, the diode impedance at the signal frequency be- 

comes 

V^V  = \ ' (5-21) 
"so^ioSV^s* 
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and the scattering coefficient at the diode port simplifies to 

,2       f..   ,.      .12 

^S^V 
soiol      L3sJ LsJ 

u)     u.    C2. + |Y-UW )|2        1 + |Y(ju )|2 

so   IO     1      '3s s 

(5-22) 

where   Y s Y„/>/u     w.     C,.    Now.   the real part of the normalizing impedance at port 3, 
3        so   io      1 

z   (ju ) = -z    (ju  ),   is non-negative on the entire   p = jw    axis.    In addition, it is clear 
3        s D       s s 

that 

lfl33(jUS
)| 

4 [Re Y(jU  )]' 

[■ 
<    1 (5-23) 

l + |Y(jwo)| 

hence,   G s 1/ |s     |      is an even function of   u     and its magnitude is greater than or 
du S 

equal to unity for all real   u  . 

To proceed with the broadbanding problem,  we consider the analytic extension of 

the steady-state expressions.    We have 

i - [Y(P)]
; 

S33(P)   '    1 + Y(p) YJp)       ' 
(5-24) 

and 

G(-p'")    r 
[l + Y(p) Y]j<(p)]: 

'33<P)833*(P) [l-   [Y(p)]2][l-  [Y+(p)]2] 
(5-25) 

where   f   (p) = f (-p)   for any arbitrary,   real,   rational function   f (p). 

2 
Furthermore,  a realizable transducer power gain function   G(-p )   must be of 

such a form that   1 - [l/G(-(> )]    is a perfect square of a real,  rational,  even function 

of   p   since 

2 
V i n>   -(■   V     I nl 

G(-p)' 

Y(p) + Yit[(p) 

1"+Y(p) Y+(p) 
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Thus 

G(-P") 

Y(p) +Y+(p) 

1+Y(p) Y^ip) 

Taking the positive sign to avoid ambiguily,   we have 

_G(-P  ) 

. + A i 

1 - Y(p) 

1 + Y(pj 

1 - VP) 
1 +Y^(P) s(p)si(c(p)    . 

G(-p  ) 

(5-26) 

The factorization is unique up to a plus or minus sign if we specify that s(p) is analytic 

together with Us inverse in the strict right-half p-plane. Invoking the stabiüty require- 

ment,   Y(p) i«  1    in the entire closed right-half p-plane,  we can identify that 

s(p)   = 
1      i7 /   \          /"      W. C, - Y   (p) I - Y(p)         v   so    IG 1 3  K 

1 + Y(p)    '     ,  
v   so    IO 1 3  F 

(5-27) 

The expansion of   i(p)    about    p = oo    is 

A 
s(p)   =   - 1 + --   + 0(-i)     , 

where 

(5-28) 

2   fü       ÜJ~    C 
V   so    io       i 

(C   >   C   ) 
—      o 

and is independent of the equalizer.    From (5-26), 

I _ h- i 

V G(u2) 

1 + A- 1 

G(u2) 

|s(ju)| (5-29) 
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and   s(p)   is a minimum-phase passive scattering coefficient.    Using calculus of resi- 

due,  we obtain the integral relation 

/   *" 

1 + A- i 

G(u2) 

1 - A- 1 

GdJ2) 

du  =   TCA )   =   ir 
2 Jü     u.     C, v   so   IO     1 

< w 
2 Tu    io7^ c, v   so   io     1 

(5-30) 

which is the fundamental gain-bandwidth restriction independent of the equalizer. 

We are now in a position to state the necessary and sufficient conditions on the 

realizability of a transducer power gain function of a varactor parametric amplifier for 

the case   w   u. ~ u     io.      and   Y„(iu)=  Y   (iu). 
si        so   io 3  J   s 3  J   i 

Theorem 5: 

Assuming   u   w   ~u     u.      and   Y   (ju  )=  Y„(ju.),   thereat,  rational,   even func- 
S     1 so    IO O S J 1 

tion of frequency   G (w )   is realizable as the transducer power gain of a varactor invert- 

ing device if and only if: 

1)     (a)     G(w  )  >  1    for all real   u. 

1 (b)     1 

2)       f   in 

—     is a perfect square of a real,   rational,  even function of   p. 

1 + /I - 
G(u2) 

-I^-lb G(u)  ) 

du    <   TT 
2 /u      (3~    C, 
V     30     IP     1 

C 

Proof:      Necessity;   already shown. 

Sufficiency:   Give   1)   and  2),  then     1 -Jl - l/G(-p2) /l +/1 -  1/G(-P2) 

admits a factorization of the form   8(p) s   (p)   where   s (p)   is a minimum scattering 
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coefficient with residue at infinity less than or equal to   (2 Jü     u7~ C,/C  ).    There- v   so   to      1      o 
fore,  Y(p)   is positive-real with residue at infinity not less than the prescribed 

c //w    uT c,. o       so   to      1 
2. It is interesting to note that any realizable G (u ) satisfying the integral restric- 

tion 2) of Theorem 5 will automatically satisfy the optimum upper-bound limitation em- 

bodied in Eq. (5-16), 

J    fn G(u  ) du)   <   ;r 
2   /u      u).      C. 

v   so    IO       1 
(5-16) 

since 

G(u  )   < 
1 +Jl - UG{J 

i -yi - I/G(U)2)_ 

for all real   u.    This is as it should be since the optimum upper-bound limitation is a 

necessary condition for realizability. 

2 
For the ideal flat response shape,   we choose   G(u  ) = a constant G     over the 

band   0 < u < u  .    Then,  irrespective of its behavior outside this band of frequencies. 

In 
i +yi - i/G, 

i - yi - I/G- 
U) <       TT 

2   /u)      u.      C, v    so    io       1 

L 
(5-31) 

i + yi- I/GT 

<   exp 
7r2   /u       U.      C, 

V    SO     10        1 

u    C c     o i-y1-i/GTj 

(5-32) 

Therefore, 

GT   <   GT MAX  =   COSh 

TT   /U) U) 
V      SO 

C, 
IO      1 

u    C 
c     o 

(5-33) 
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which is the optimum gain-bandwidth relation for the ideal flat response.    Also, 

cosh V T MAX 

v/ü)    üT c, 
V    80     lO 1 

(5-34) 

where   uc   is the low-pass bandwidth.    Let    p = 2 C   /C     be the pumping ratio;   (5-33) 

is equivalent to 

GT MAX =   COSh 

ir Ju      u 
V   so    : ID     p 

2 
(5-33b) 

V.4    Modified Butterworth Response 

We shall now consider the modified Butterworth response prescribed by 

<4n   ,    A2n, 

0(0, n)   = 
S4"  +£

2n(K    +1)  +r(K   +l)2/4] 
 n L   n J 

u       + u     (K    + 1)  +(K  ) 
n n 

(5-35) 

where   K    >  1   and   w = u/u  .    The d.c.  gain is given by 

G(0) 
(K    + 1)' 

4K (5-36) 

It can readily be shown that this characteristic (5-35) satisfies condition  1)  of Theorem 

5.    Let   w      denote the true 3 db bandwidth,  then   w     and the normalization frequency 

u)     are related via the formula 
c 

i(K   + 1) 
■i     n 

K   - 1 
n 

-  1 

IK
2
 - 6K  + I _ v   n           n 

l/2n 

(5-37) 
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From Rq. (5-35), 

.4n >n *2n (K     + 1)' 

G(-ß2.n)   = 
r     + (-l)"^n(K    +1)  +_S- 

P       + (-1)    P    (K    + 1)  + (K ) 

P2"   + (-D"   ^^ 

p2nM-l)n(Kn)][p2n
+(-l)n (5-38) 

1 - 
1 

G(-p ,n) 

(K    - l)/2 
l2 

9„ K   + 1 

&2n
+(-i)n(-V-) 

(5-39) 

and 

G(-p ,n) 
(-1)' 

(K    -  l)/2 
n 

e2n + (-!)*(."_) 
(5-40) 

where the factor   (-l)n   is added so that at   p = 0,   ./l - l/G(-p2,n)     will be non-negative 

for all   n.    Therefore, 

-F- i - yi - i/G(-r,n) 

y- .2 
'   s(p)5:(t(p) 

1  +71 - l/G(-p',n) 

-      P2"  t (-1)" 
n       02n + (-l)nK 

(5-41) 

The factorization for   s(p)   is given by 

s(p) 
(p    + a 

n-1 
All-l . 

P + ...   + a, p  + a  ) 
1 o 

,,1/2.-1/2  An   ^    , 
K. (K p     ■»• a 

n     '   n F n-1 
An-1 i    A P +  ...    +  a     p  +   1) 

(5-42) 
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where the   a.   are the coefficients of the Butterworth polynomial of order   n   and   a. 

a./(K )l/2n   (Reference 23). 
i      n 

Expanding   s(p)   about   p = oo   gives 

rl/2n 
(K: 

S(P) = -i + 
1) a        u 

(5-43) 

n-1 
2n 

Equating the firsl. two coefficients of Eq. (5-43) with that of 

Al 1 s(p)  =   -1 + —i   + 0(—)     , (5-44) 

2    /u      ÜT"    C, 
Aj   =       ^   B0

C
10      1     , with      C   >   Co     , 

we obtain for   C = C 

l/2n      ,.        ,    .       TT  .        \l   BO    IO       1 (K -  1    =   ( sin —- )  
n 2n io    C (5-45) 

The solution for  K     is 
n 

K 1 + 
2 (sin — )   fa      ü)7^    C, 

2n     v   so    io      1 
w    C 

c     o 

2n 

(5-46) 

Substituting the relation between K     and the d.c.  gain   G(0)   and the relation between 

u     and the true  3 db bandwidth   w  ,  Eqs.(5-36) and (5-37),  we obtain the gain-bandwidth 

restriction for the modified Butterworth response as follows: 



68 

2   r/u.    " .,       C./C  1 [ein -f 1 
Lv   so    iu       1      oj  L        2n J 

(Kl/2n   -  1) 
n 

(K    + 1) 
ii 

2 ^n-1»/,^ 

l\ 
]U2n 

- 1 
(K    - 6K    + 1) 

n n 

where 

K    =  [2G(0) -  l]   + 2 V/G
2
(0) - G(0)      . 

As   n —► oo,  let   u    = w   ;   then 
c c 

(5-47) 

limit    K    =   e 
n 

n —► oo 

2* Jü     ü-   C,/u)   C 
so    io      1      CO 

(5-48) 

From Eqs.(5-36) and (5-48), 

ajr/ü     u~   C,/u)   C 
V      SO    IG 1       C       O 

-\2 

limit   G(0)  »   -^ 
n -•■ oo 

+   1 

4 e 
2n Ju     u.     C, Zu   C v   so   io      1     c    o 

(5-49) 

Therefore, 

limit   G(0) 
n —» oo 

2   >- 

jr,/u     u).     C,/u)   C -"■,/"     u,     C,/u)   C 
v   so   io      1     c    o v   so   io      1     c    o 

; + e 

=   c os h 
L SO io  Cl/ücCol =  GTMAX 

(5-50) 

Thus we can conclude that in the limit   n —» oo,   the gain-bandwidth limitation for the 

modified Butterworth response reduces to the optimum gain-bandwidth relation for the 

ideal flat response. 
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V.5    Modified Tchebycheff Response 

We next consider the modified Tchebycheff response prescribed by 

2 

e
4T4(ui) +  e

2T2(£.)(K    +1)  +—^  
„,*2     . n n n ^  
G(u) ,n)  = 

c4 T4(u)  + e2 T2(Ö)(K   + 1) +(K  ) n n n n 

(5-51) 

where K    > 1.   (3 = w/«   .    e   is the ripple parameter, and   T   (u)   is the   nth   order 
n — c n 

Tchebycheff polynomial^" 

T   (Ci)   =  cos (n cos     u)     , 0 < w  <   1     , 
n —       — 

=  cosh (n cosh      u)     , u   >  1     . 
(5-52) 

The d. c.  gain is given by 

G(0) 
(K    + 1)' 

n  
4K 

(for   n   odd). 

G(0) 

■ K    + 1 

(-V)-2. 
12 

(K    +€2)(1  + e2) 
(for   n   even). 

(5-53) 

For small ripple   t, the difference between   G(0)   for   n   odd and even is negligible.    It 

can readily be shown that the modified Tchebycheff response given by Eq. (5-51) satisfies 

condition  1) of Theorem 5.    Again,  the normalization frequency, «c, can be related to 

the true bandwidth,  w  . 

From Eq. (5-51), 
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A     i.               •>     o                              (K    + 1) 
.              e    T4(p)   +  t    T2(p)(K    + 1)  +      "^ 

„/A^i                n                      nn                        4 G(-p  ,n)  =    — —  

e    T   (p)  +  e    T   (p) (K    +1)  + (K ) 
n n n n 

(K   + 1) 

L< T;<P) +   2 

[e2 T2(p) +(K ) e    Tn(p) + (1)1 
(5-54) 

1  - 
G(-r.n) 

(Kn + l)/2 

e    T   (^  +I(K   + l)/2 
n L   n 

(5-55) 

and 

(K    - l)/2 
n 

2 _2 
G(-p  ,n) E    T^p)  +[(K    + 1)/2| 

n L   n i 

(5-56) 

Therefore, 

I'/l-  l/G(-^2
>n) 

1 +/! -  l/G(-p2,n) 

=   s(p) s   (p) 
e2T2(^)  +  1 

n 

'n        e    T   (^)  + K 
(5-57) 

s(p) s^p) 
T2(p)  + (1/e2) 

n  _ 

n        T2(p)   + (I/?2) 
(5-58) 

,.22, 
where   e    r   E   /K .    The factorization for   s (p)   is given by 

s(p) 

.n /,n-l 
(p     +bn_lP + 

,An ,       ^n-l 
(p     + b     , p + 

n-1 

+ b   6 + b ) 
1 o 

+ b^ p  + b  ) 
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where the   b.   are the coefficients of the Tchebycheff polynomial for a ripple parameter 

e   and the   b!   are the correBponding ones for the ripple factor   e//K~. 

Expanding   s(p)   about   p = «   gives 

(b'    .   -  b     ,) u 
n-1 n-1 

8(p) =  - 1 + 
9* 

(5-59) 

where 

and 

sinh — sinh       — 
n e 

n-1 

sinh 

2n 

i {-iK 
—   smh         
n e 

n-1 
2n 

(5-60) 

(5-61) 

Using the same procedure as in the modified Butterworth  case,  we obtain by equating 

coefficients 

sinh   | — sinh  
n e 

2 Jü     ü~~ C, 
IT  n       v   so   io     1 ^   i   • u-1 i       r ■    *■ 1        so k h     - emh      —      =     sm 's-        ^r- 

n el 2n   I u    C 
(5-62) 

The solution for   K     is 
n 

2    •   ,2 1 ■   u"1 
K     =    e    sinh    <  n sinh 

n 

2 ./u      u).     C. iii 
VSOIO        1 ,.         ff., .,/l        •i.~A1\   (sin — )  + sinh ( -   sinh       - ) 

u    C                          2n n e 
• .  (5-63) 

The above relation, coupled with Eq. (5-53) and the relation between u)c and the true 

bandwidth w , gives the gain-bandwidth restriction for the modified Tchebycheff re- 

sponse. 

As   c —*■ 0   and   n —* oo , 
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limit   K     =   e 
e-0     " 

2ff,Aj     uT  Cju   c 
»   so   10      1     c    o 

(5-64) 

which is the same as that of the modified Butterworth case (n 

gain-bandwidth relation for the ideal flat response. 

oo) and reduces to the 

V.6     Additioiiiil Bandwidth Limitation Imposed by Series Parasitic Inductance 

The analysis for the optimum nonreciprocal varactor amplifier using a single var- 

actor for the case   u   co   ~ u        and   Y   (ju  ) = Y   (ju.)   was presented in Section V.3. 
SI SO OS ul 

We shall now consider the same amplifier configuration using a more exact  varactor 

equivalent circuit which includes its series parasitic inductance   L.     (Fig. 10). 

Recalling from Section V.3, 

-y- 1/G(V) 

1 +Jl -  l/G(-p2) 

1 - Y(p) 
1 + Y(p) _ 

1 - Y«(p) 
Ll + Y*(p) i(p) i^Cp) (5-26) 

and 

i(p)  ' 
I-Y(P) .. yu

Souio c
1-

Y3(p) 

1 + Y(p) /w      ü-   C,  + YQ(p) \l   so    10      1 3  ^ 

(5-27) 

where   s(p)   is a minimum-phase passive scattering coefficient.    At high frequencies, 

the behavior of   Y   (p)   can be expressed as 

V"»"   pCo + pL + ^(P) (5-65) 
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where   L > L     and   z„(p)   is an arbitrary positive-real function,  finite at   p =  «, 
—     o 3 

Then it can be shown that the expansion of   s(p)   about   p = oo   is 

A A A_ . 

p       p P 

(5-66) 

where 

,2 ,„2 
A,   =   2 Jw      wT   CjC       , Ar,   =   2 u)      u.     C'/C' 

1 v   so    io      1     o 2 so    IO     1     o 
(5-67) 

and 

A3  = 2   /w      u.      C,/C    L 
V    so   io      1     o 

u      w.    C, L - C 
SO    10      1 o 

(5-68) 

Thus, 

in     =  j"  + — 
sip} P 

2   Zu     ÜT    C. v   so   io      1 /ui     u.     C, v/   so   io      1 

C3L 
o 

3C   - w     u.   C, L o       so   io    1 
^0(—) 

P 

(5-69) 

Since 

/ 1 +./1 - 1/G(u ) 

L-/ 1 - 1/G(u  ) 
|s(ju) 

2 
(5-70) 

we can obtain two simultaneous integral restrictions as follows: 

/    ** 
■/■■ 

X +Jl - 1/G(w ) 

L'V 1 - /l - 1/G(w ) 

du  =   n 
!,/u      u v    so C, 

io      1 (5-71) 

J    u    in 
1 + /l - 1/G(w2 

b-y 1 -  1/G(u  ) 

dlü    =    TT 

2 /ü     u^ C, (3C    - w     u.    C. L) v    so   io      1 o        so   io     1 

3 L C 
(5-72) 
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For the ideal flat response shape,   we choose   G(u;  ) = G    ,  a constant,  over the 

band   0 < w < w .    Then,  irrespective of its behavior outside this band of frequencies. 

*n 
1 +/1 - 1/G, 

-yi-i/ G„ 

CO <     TT 
C    — 

2 ,/ü      ÜJT   C, 
u    so    IO      1 

(5-73) 

and 

fn 

i +yi - i/Gr 

-yi-i/( c   — 

2  /u     u.     C, (3C   - w      w.    C,  L) 
V     SO    IG      1 o        so     io      1 

L CT 
(5-74) 

Therefore, 

GT MAX =   COSh 

IT     /U UJ. C. 
V    so     IO        1 

ÜTc 
c    o 

(5-75) 

and 

G^ „ . „  =   cosh 
T MAX 

ir  /u      w,     C, (3C    - u)      u.    C,   L) 
\/    so    io      1 o        so    IO     1 

3 3 
U)    L C 

c o 

(5-76) 

The additional restriction, (5-74),   which is due to the parasitic inductance,   may 

be rewritten as 

fn 
i + yi - i/Gr 

i - yi - I/GT 
c   — 

2 Jw     w.     C, 
v   so   io      1 

C 

3C 
2        "l 

J      u      C,   L   j 
so   io     1 

2 ,   „2 
w    L C 

c o 

(5-77) 

from which we can infer that for    u    >   (3 C   - u     u      C, LI/ILC   (  ,   (5-74) is the 
c  —   t       o       soioi;/L       oj 

more restrictive bandwidth limitation.    In other words,  the presence of the series para- 

sitic inductance serves to limit the bandwidth over which the optimum gain-bandwidth 

can be attained.    This has also been found to be the case in the tunnel diode amplifiers. 
13 
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Furthermore, from the additional integral restriction (5-72), we can infer that 

3 C 
>  L   >   L       . (5-78) 

^,2 -      o 
u      u.    C, so    io     1 

2 
since the integral in (5-72) is constrained to be positive from the fact that   G(w ) > 1 

2 
(and   G(u )^ 1) for all real   u.    The usefulness of condition (5-78) as a stability crite- 

rion for a dissipationless varactor is questionable,  however,  since in this analysis we 

have assumed not only the ideal-sideband terminations but also the conditions that 

u   u. = u     u.      and   Y   (ju  ) =  Y„(ju).). si        soio Ss 3i 



CHAPTER    VI 

MULTIPLE   VARACTOK   PARAMETRIC  AMPLIFIERS 

VI. 1     Parametric Amplifiers with   n   Varactor Diodes 

Before embarking on the actual treatment of parametric amplifiers incorporating 

n   varactor .hodes,  we shall describe the complex normalization technique for a scatter- 

ing matrix of a passive   n-port normalized to a full   n X n   matrix.    This is relevant be- 

cause of a unique characteristic of an  n-varactor system;   namely,   although they are 

uncoupled physically,  their electrical behavior appears as a completely coupled system. 

In Section III.2,   the scattering matrix of an  n-port   N   normalized to   n   uncoupled 

impedances was described.    Now we shall generalize this technique to define a scatter- 

ing matrix for   N   normalized to a full   n X n   matrix   Z.    It has been shown10  that the 

same technique carried over,  provided 

R(jui) 
Z(ju)   + Z   (jui) 

>    0 U    E    W (6-1) 

then    R(ju)   possesses a unique hermitian,  positive definite square root   R       .    Equa- 

tions (3-3) and (3-4) are replaced by 

2 R a   =   Y  + Z I       , (6-2) 

1/2 * 
2 R  '     b  -   V  -   Z    I (6-3) 

Finally, 

-1/2 * -11/2 
S  =   R (ZN -Z   )(ZN

+ Z)       R (6-4) 

which corresponds to Lq. (3-16) for the case   Z = diag  fz      z z "i 
L 1      2     nj " 

76 
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The amplifier we are investigating now is that employing   n   varactor diodes em- 

bedded in an arbitrary lossless nonreciprocal (n + 2)-port   N.    Suppose the   n   linear 

variable capacitors are characterized by 

CiM  =   cni   + 2Cii   cos (u   t  + fl.) 1 01 11 O 1 

C2(t)  =   C02  + 2C12  ^^o1  + e2) 

(6-5) 

C   (t)  =   C       + 2C,     cos (u   t + 6 ) n on In o n 

Fig. 11 is then a schematic of a parametric amplifier using   n   varactor diodes. 

Let us first consider the case where   6    =0,   r = 1, 2, . .. , n.    Then the inverting 

device is characterized by 

I       = - ju    C      V       -  ju    C,    V.       . (6-6) sr '   s     or     sr       ■'   s     Ir    ir x       ' 

I.      =     jw.   C,     V       + ju.   C      V.        . (6-7) ir i      Ir     sr       ^   i      or    ir 

r = 1, 2, . . . , n.    Let 

is   =(Isl'   ^2    W' <6-8> 

ys=(Vsl-Vs2 VsJ <6-9) 

ii  = (Til'1i2 "^in)' (6-10) 

^i-^il^i2 Vj     ' <6-11> 

then 
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1    =   -ju    C    V     -  jw   C, V. (6-12) ~s s     o ~s       J   s     1 ~ i v 

Ji  =     ^i   C1Vs  + j^C^     . (6-13) 

Co-   di*e[C0V   C02-   ••••Con]   -C (6-14) 

\-   di^[Cll'Cl2-   ■•■•Cln]   tt'l1     ■ 

Using 

it can be shown that 

(6-15) 

"is   =   [V^S*  +JUsCo]^ (6-16) 

ii=   pN^^i»   +^iCo]Yi '                                            <6--^ 

YD(ju)s)   =   -Usu. C1ZN(Ju),)C1 (6-18) 

Z
D

(JU
S
)
 = - ir^i V^M ■                   (6-19> 

Y      is the   n X n   admittance matrix of an n-port   N   facing the   n   varactors (see Fig. 

12).    The expression for   Z    (ju  )   demonstrates explicitly  a unique property of a par- 

ametric device incorporating   n   time-variable elements;   namely,  even though the   n 

varat tors appear physically as   n   uncoupled elements,   as far as their electrical prop- 

erties are concerned,   they behave as if there is coupling between every pair of varac- 

tors.    In esseni e,   Z    (Ju)  )   is no longer diagonal,   having taken into account the load- 

ing effect of all the varactors. 

Let   S   be the scattering matrix of the  (n + 2)-port   N   (Fig. 12) normalized to   R 

at port 1,   R       at port 2,  and a full   n X n   matrix 
g 
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zu«) = - zDuüs) = jpi- 4y yN(iu,i) 4 . (6-20) 
S      1 

at ports 3 to   n + 2,   the paraconjugate match condition at the varactor diode ports.    De- 

note   S   by 

Sll    S12 

S21     S22 

N 

(6-21) 

whei-e   S      is the scattering matrix of the   n-port   Ä   as shown in Fig. 12.    Since   N   is 

lossless, S   is unitary, i. e.,   S   S =  1    , „;   it can be shown that n + 2 

2 

Gjw ) 
t    s 

S12(jUJ
S
) 

detSN(ju>s) 
(6-22) 

Hence 

G (u  )   < 
t    s    — detSN(jWs) 

7i = G<W
B
)   • 

(6-23) 

From Eq.(6-4),   S    (ju )   is given by 

-1 „1/2, 
SNUws)  '-  K^^J [ZN(JWB)-Z   (ju,8)]  [ZN(ju,s)+Z(jW8)]-    R17   (ju,B) 

=  R'1/2(jus) 
si si 

R^Uu.) (6-24) 

It follows that 
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detSN(ju,8) 
d<Us"i-YN(-i'V'/lYN(j"i)A] 

det[u)sWi+YN(ju,s)/1YN(jW.)/1] 
(6-25) 

For simplicity,  consider the   n  varactors to be identical,  i.e.,    •/, = C,   1     and 
1        In 

■/   =   C    1    ;   then Eq. (6-19) simplifies to 
o o   n 

V^s' 
u   u). C, 

s    i     1 
2 ^i^   ' 

(6-26> 

and Eq. (6-25) becomes 

det 
det S-,(jw  )  = 

N       s 

[ln -(l/^^C^YJj^JYJj..) 
sil      Ns     Ni 

det^-d/^u.C^Y^J.^Y^u.) 
(6-27) 

Now we shall impose the assumptions that   u   u. = u     u.      and   Y„(iu  ) = Y. (iu.). 
s   i        so   IO N       s N      i 

The latter is the generalization of the assumption   Y(ju)  ) = Y(ju.)   we have employed 

in Chapter V for the single varactor case.    Equation (6-27) then becomes 

det 
detSN(jUa) 

- „C^-Y^U^)] 
so    io     1        N       s . 

det lu     w,   C? +Y„(jw  )Y*T(iu  ) 1   so   io    1 N^   s      N J   s 

(6-28) 

and 

G(u2) 
|detSN(jWs)| 

det  fu      w.    C2: +YXT(ju ) Y*(jw n 
Lsoiol Ns      NsJ 

dei !-,-.. ...et1 -yl(jws)J so   io     1        N 

(6-29) 

The analytic continuation of   G(u )   is given by 

C.(-p  ) = 
.                                      det2  [u     u,    C2 + Y^Cp) Y^  (p)1 

 1  L so   io     1        N N*     J  

[det S   (p)] [det S     (p)]     det fu     u.   C^ - Y2
T(p)l fu     u,   C2 - Y2   (p)l 

L. N >- J i_ N«    J ^ so   io    1       N    J 1_ so   io    1       N*    J 

,(6-30) 
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Clearly, 

Thus, 

G(-p2) 

det FY    (p) +Y..   (p)1 Tw     ^~   C, 
IN N*     -I v   so   10     1 

det uj      w.    C* + YM(p) YWi(p) 
so   io     1        N N* 

1 - 
        det |Y   (p) + y^^Cp)] ß    ü.    c, 

1 L N N*     J   V   so    io     1 

G(-P2) det   [-S0-oC^YN(p)YN + (p)] 

where the positive sign is chosen.     Then 

1 -   /l - l/G(-p  ) det  r/i      w.     C.  - Y.TCp)l  r/«      W~   C, - Y^.Cp)' v r Lv   so   io      1        N     J Ly   so   io      1        N* 

, j.   17    wr-,     ^        det F/w     w.     C.+Y-Jp)] i +    i - i/c;(-p ) LV so  io    i      N    J /u     ü-   C, + Y1VT.(p) 
V   so   IO      1        N* 

(6-31) 

(6-32) 

=   det  flu      u).     C,  - Y    (p)"]   f/w      u.     <",  +YTvl(p)T    f/ü      u).     C,  - Y>T]1[(p)] 
[y  su    io     1 N     J  Lv   so    io     1 N     J       Lv   so    10     i        N*     J 

/u     Ü7~ C, + YTvIÄ(p)T1      . 
/  so   io      1 N*     J 

1 )e fining 

Equation (fi-34) can be written as 

l-./l l/G(-p2) 

1 * Ji - l/G(-p2) 

[detSN(p)] [detSN#(p)] 

(6-33) 

§    (p)   =    \'ß      Ü-   C,  - YM(p)j  I /w      Ü-   C,  - YM(p)r1     . (6-34) 
N Lv   so    10     1 N     J  L^   so    io     1 N     J 

(6-35) 
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Rut   S      can be interpreted as the scattering matrix of an  n-port,  each of whose ports 
N 

must be shunted by a capacitance at least equal to   C .    Therefore,   det S     must be sub- 

jected to the integral restriction    (C > C  ) 

J    In 
I det §NUw) 

du 
2 irn ./u      u.     C, 

v   so    10      1 (6-36) 

Combining Ecis.(6-35) and (6-36) we obtain 

J    Cn 
1 +./1 -  1/G(w  ) 

/ 1 - ,/l - 1/G(u2) 

du   < 
2 7r n Ju      u,     C, 

^   so    IO      1 (6-37) 

which is the fundamental gain-bandwidth restriction independent of the equalizer. 

2 
For the ideal flat  response shape,   we choose   G(u  ) = a constant (G   )     over the 1 n 

band   0 < u < u  .    Then,  irrespective of its behavior outside this band, 
c 

1      + /I      -     lAGrp) 
V 1 n 

i - yi - i/(GT)n 

<   exp 
2 7rn yi u      u,     C, 

so    IG      1 (6-38) 

Therefore, 

^   ^   (GT MAX),,  =  CÜSh 

mr J, u     u.     C, 
so    to      1 

u   C 
c    o 

(6-39) 

which is the optimum gain-bandwidth relation for the ideal flat response with   n   identi- 

cal varactors.    For   n   varactors with parameters   C 

straightforward extension of our analysis shows that 

cal varactors.    For   n   varactors with parameters   C        and   C,   ,   r = 1, 2, ..., n,   a or lr 
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^T^   ^   (GT MAX^ 
cosh 

/u)      uT n C, 
v   so   10 y Ir 

w ^, C c r = 1      or 
(6-40) 

Equation (6-39) or Eq. (6-40) can be realized by  cascading   n   optimum nonreciprocal 

amplifiers of the type shown in Fig. 7.    The circulators used in such a cascaded ampli- 

fier provide the isolation between the various stages using single varactors. 

VI.2     Extension to Traveling-Wave Parametric Amplifiers 

The properties of traveling-wave and distributed parametric amplifiers employ- 

ing discrete nonlinear reactances have been studied extensively.     '     ' But several 

important questions remain to be answered.    For example, it is desirable to find the 

optimum pumping phase to give maximum stable transducer power gain for the arbi- 

trary distributed parametric structure.    Previous papers have all imposed the syn- 

chronous phase condition;   when this is satisfied,  there is no guarantee that the maxi- 
25 

mum negative resistance is obtained because this is dependent on the product V V.. 

Furthermore, no definite bandwidth estimation is available since most analysis work 

has been done on the steady-state behavior only.    In this section we shall merely ex- 

tend some of the results of the previous section and present some preliminary results 

from which further work can be continued to answer some of the outstanding questions. 

From Eq. (6-4),  we can obtain 

det (S   )  =  det (Z^ - Z*) (Z^ + Z)"1 

N N N 

=  det(ZlvT +Z)'1 (Z_T - Z*) 
N N 

(6-41) 

By defining 

* s i - (zN + z)-1 (zN - Z*) (6-42) 



it is clear that 

where 
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2(ZN + Z)"1 R     . 

1 * 
R =   - (Z + Z   )    . 

(6-43> 

.et the eigenvaiues of   <ti be denoted by   \     and   u    = X      .   (r = 1   2 
r r        r n);   then 

2(ZN + Z)       R x  =   X x     , (6-44) 

U R~   =    2  (ZN + Z)2 (fc-45) 

and by pre-multiplying both sides of (6-45) by   x     and adding its conjugate,   we obtain 

2 Re u   =   1 + 
x    R x 

(6-4<;: 

where    RNi = R^Ug). 

Equations (6-19) and (6-20) are to be modified,  respectively,   to 

Zr^JW  ) Y^uu-p I -DlJ   s' u   u.    "1  ^N^^i'   ^1 
s   i 

(6-4?, 

;(ju  )  =   -Z    (ju)  )   =   —i-   / Y    (ju.) J'     , 
B D       s u   u.    "1     N      i       1 (6-48) 

where   J. = C       is now interpreted with 

C1   «   diag ■j9l     „ -^2 J9 
Clle 'C12e  Cine       " (6-49) 
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Thus 

R 
U)     (J.        1       Nn   "*1 
SI ^ 

where   G»j    = G„(IJ.).    Substituting into Eq. (6-47), 
^ 2 N     1 

or,  for   y = ^ x , 

2 Re u   =   1+   — r—      , (6-51) 

^17  *    /i GN    /i 2 
si « 

* 
x    Rj^   x 

2 Re u  =   1 + —^ jpi-^     . (6-52) 

u   u.    X   GNO ^ 
si 2 

Therefore, 

Re u   >   i      , (6-53) 

i. e., all the eigenvalues of   0   must have positive real parts. 

-1 * 
Denote the eigenvalues of   (Z., + Z)     (Z., - Z   )   by   y ,   r = 1, 2, . .,, n;   then, 

-1 N N -1      r * 
since   X    = u are the eigenvalues of   ^ = 1 -(Z,T + Z)     (Z^T - Z   ), 

r        r IM W 

X     =1-Y       , r=l, Z, ...,n     . (6-54) 
r r 

It is well known that 

n 
det (<t>) =    TT    \.    • (6-55) 

r = 1 

Hence 

det (SN)  =   det (ZN + Z>"1(ZN - Z*) 

= TT (V = ft  (i - V =  IT <i - ^->   •        (6-56> 
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It follows that 

r = 1   L J 
(6-57) 

From Eq.(6-45), 

and 

* 
x     R x ~ r     ~r 

X    =   —- (6-58) 

Rl/w   w.) x*   J. GN    1 x  I" 
L       s   i   ~r "1     iN2  "l ~rJ 

*   1 12 
^r  2  ^N^^^rl 

(6-59) 

Substituting Eqs. (6-52) and (6-59) into Eq. (6-57), 

|det(SN)| TT 
r= 1 

1 - 
4^%i ^r) P 1/U,

S Wl) 2r GN2 Zr] 

x    Z»,   x    + - ~r     N, ~r      u   u.  ~r     N_ ~r 

* 
^r YN0 

X'- 
si 2 

(6-60) 

and finally 

id«t(sN)i2 = n 
r = 1 

*                         1 * 
x    Z„   x    -    y    Y,     y 
~r     N, ~r      u   u.   ^r    N   ir 

1 si 2 

_L 
si 2 

x    Z^T    x    +   y    Y       y 
~r     N, ~r      u   w.  *T     N„ ~r 

(6-61) 

where   ZNl =  ZN(jua),   YN2 = YN(jioi)    and   jr = j/ x .    Expression (6-61) contains 

the solution of the problem of finding the optimum pumping phase condition to give max- 

imum stable single-frequency transducer power gain.    It involves essentially a study of 

the extremal properties of this eigenvalue problem. 

Another difficulty manifests itself through the power gain expression 
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12' 

|det S 
(6-62) 

N' 

where    |s     |     can be interpreted as the backward gain when the diode ports are ter- 

minated in   -Z    (ju  ),   a full   nXn   matrix,  and in general   |s     |      depends on the 

pumping phase.    Although we have succeeded in showing that   G / js.- |      is related to 

the equalizer impedance   Z      only, the obstacle here is our inability to delineate 

js     |      more closely.    A limited answer lies in the generalization of Eq.(3-31);   i.e.. 

Gt  = 
12 

det (SJ 
N 

1 
<    4 

1 + 
1 

I det S 
N' 

(6-63) 

where for the optimum case the equality holds,  but for most practical amplifiers only 

the inequality applies.    In any case, the transducer power gain is bounded by the quan- 

tity ., 2 
* ^ 1 * 

i 11+ TT 
r=l 

* 
x   Z„   x    + - ~r    N, ~r       i»)   u.   ir     N„ ~r 

1 si 2 

* 
y  Y, 

x   Z y  Y. 
r    N, ~r     u)   u.   ir    N0 ir 

1 SI 2 

(6-64) 



CHAPTER    VII 

NOISE   PERFORMANCE   OF A   VARACTOR   PARAMETRIC  AMPLIFIER 

The parametric amplifier has become an important and useful device largely be- 

cause of the fact that it is capable of low-noise amplification,  since ideally a pure re- 

actance does not contribute thermal noise to the circuit.    In practice,   unavoidable loss 

will accompany the nonlinear reactance and the nonlinear element may further introduce 

additional non-thermal noise.    In the solid-state version of the parametric amplifier, 

using a back-biased semiconductor diode,  Uhlir     has proved that shot noise is negli- 

gibly small and only thermal noise appears to be of any significance. 

27 
It has been shown by Penfield       that the series resistance    R      which is the 

s 
spreading resistance of the  p-n  junction,  provides a fundamental limit on the noise 

performance of the parametric amplifier,  and that this ultimate limit is achieved at 
p Q 

a finite pump frequency.    In an earlier work,   Heffner and Wade       presented a noise 

theory in which the varactor loss is neglected.    They concluded that for the lowest 

noise figure,  the pump frequency should be as high as possible. 

A characteristic of the parametric device which sets it apart from conventional 

devices is that the noise processes come from both the signal and the idler sources. 

In a simplified analysis,   it may be assumed that the only source of noise is thermal 

noise generated in the varactor loss at each frequency and in the dissipative part of 

the idler termination.    Since the series resistance    R     appears physically in series 

with the variable element,  it is more convenient to work with a series equivalent cir- 

cuit and use the corresponding ideal sideband-termination assumption in which currents 

at all sideband frequencies are suppressed except at the desired frequencies. 

Then,  using the same procedure as in Section II.5,  the small-signal impedance 

matrix,  including the series resistance,   is given by 

88 
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■ 

V. 
1 

■ 

V 
s 

L          J 

(R    - -r^) s      jw. 

(-^) 

(jt) 

(R      +T^) 
8 JU) 

_ 

"fi 

I 
s 

L      J 

(7-1) 

Then,  analogous to Eq.(2-39),  we have 

ZD<jW
S
) 

u
s
uiZ3Uui) 

(7-2) 

where the d. c.  elastance   S.    and   R     are incorporated into the equalizer.    Now let 
/> A 

z      be the impedance of the varactor diode,   including   S     and   R   ,  and   Z„   be the 

equalizer impedance,  which is a completely arbitrary positive-real function;   then 

V^V   =   ZD(iUs) + R
S   + jl7 (7-3) 

z3(jU.) =  z3(ju).) +RS + — (7-4) 

and Eq. (7-2) can be written as 

£_(jU  )  =   R    + -^ D       s s      j u) 
Z„(ju.)  + R    - ^— 

3       x s      ju. 

(7-5) 

It is known that the customary noise figure   F   is not a good criterion by which to 

judge amplifiers of low gain,  because the noise of the succeeding stage is important. 
29 

Haus and Adler       have introduced the concept of the "noise measure"   M     by the defi- 
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IF 1) 
M 

(1  - 1/G   ) e 
(7-6) 

where    F     is the exchangeable noise figure and   G     is the exchangeable gain.    It was 
e 30 e 

proved by Penfield      that for a single negative resistance   M     is given by 

M 
k T    Af 

o 
(7-7) 

where    P     is the exchangeable noise power of the negative resistance.    Assuming that 

the only source of noise is thermal noise generated in the varactor diode at   u     and   u. 
27 S i 

and in the dissipative part of the idler termination,   Penfield       gave an expression for 

the noise measure   M     as follows: 
e 

M 
U 

(-R) 

i    T„  +   K. T, 
s      U ii 
f    (R    -I-   R.) 
OS i 

R 
(7-8) 

where 

R Re PD^S'] Re    Z W] 

and   T,^   ami   T.    are the absolute temperatures of the varactor and the idler termina- 
. . D i 

lion,   respectively. 

For a dissipationless varactor,   R    = 0.    M      reduces to 
s e 

M     = e 

w T 
(7-9) 

which is the noise performance of a lossless varactor parametric amplifier and agrees 

with the result of Heffner and Wade.    For a lossy varactor,  it has been shown that by 

tuning the idler and choosing an optimum pump frequency an ultimate limit of the noise 

per'formmiie is achieved. 



CHAPTER   VIII 

STABILITY  OF   LINEAR  TIME-VARIABLE  SYSTEMS 

VIII. 1     Introduction 

In this chapter we shall show that within the framework of small-signal analysis 

and purely sinusoidal pump a linear three-term recursion relation is obtained.    Then 

the stability is delineated by the roots of a transcendental relation derived from the in- 

finite Hill determinant which is of the special type associated with continued fractions. 

By imposing the ideal sideband-terminations assumption,  we consider the three- and 

four-frequency modes,  the stability of which is implied if the equation   Z^p) + zD(p) 

= 0   has no root in the closed right-half p-plane. 

It should be noted that most of our work on broadbanding is based on the ideal 

sidebandband-termination assumption,   in which we assume that all the sideband frequen- 

cies are suppressed,  except a few of direct interest.    This is obviously not a physically 

realizable assumption.    Nevertheless,  this assumption has been used in most of the 

existing work in this field.    The justification for imposing this assumption usually cited 

is that practical parametric amplifiers have been successfully built based on this model. 

It seems reasonable to assert that,  for a stable system,  predictions on the gain and 

bandwidth based on the three-frequency mode of operation would be qualitatively sub- 

stantiated,  at least on a first-order basis;   i.e.,  the effects of the neglected sideband 

frequencies on the gain-bandwidth performance of a parametric amplifier may be in- 

corporated using a perturbation technique.    A similar assertion,  however,   cannot be 

made for the stability behavior.    It is clear that the assumption of a three-frequency 

model may lead to serious difficulty as far as the stability of the system is concerned. 

Furthermore,  if a system with an infinite number of frequencies is known as stable, 

there is no assurance that this will imply that a truncated version of the same system, 

consisting of a finite number of frequencies,  will be stable. 
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In this chapter we shall consider systems consisting of varactors embedded in a 

lumped but otherwise arbitrary linear time-invariant environment.    Then the equilibri- 

um state is governed by an ordinary total differential equation with periodic coefficients. 

We can apply the Floquet theory which provides an existence theorem on the form of the 

solutions of the equation,  but which of itself furnishes no information on the nature of 

the characteristic or Floquet exponents.    Stability is implied if all the Floquet expo- 

nents have non-positive real parts.    No general,  easily applicable,  necessary and suf- 

ficient conditions for stability are available.    However,   recently,   a real-frequency 

stability test was established by Youla8  for the undriven response of varactor-like de- 

vices coupled through a linear,   stable,  time-invariant  n-port. 

For a linear variable circuit whose parameters are periodic functions of time of 

period   T   driven by the excitation   ept,   a statement can be made concerning the steady- 

state response of the driven system.    In Section VIII.4 we shall prove that the steady- 

state response is a function of the form   ePt V(t),   where   V(t)   is a periodic function 

of period   T,   provided the undriven system is stable. 

VIII.2     Linear Three-Term Recursion Relations 

We shall now consider the linear three-term recursion relations by first stating 

some of the conditions implicitly assumed in Section II.4.    The schematic of a system 

consisting of   n   linear variable capacitors embedded in a lumped,  linear, time-invari- 

ant environment is shown in Fig. 13.  The current   Ut)   at the terminals of n-port   N 

can be expressed by 

i(t)  =   -~  [C(t)v(t)]     , (8-1) 

where 

v(t)  =    [v^t),  v2(t) vn(tj]' 

Ut) =   [i^t).   i2(t),  ....   in(t)]' 

(8-2) 

(8-3) 
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and 

C(t)  =   diag [C^t),   C2(t) Cn(t)l     , (8-4) 

C(t)  =   C(t + T)    . (8-5) 

Since the n-port N is assumed to be lumped, the equilibrium state of the system 

is governed by an ordinary total differential equation with periodic coefficients of period 

T = U)  l2ir.    Then,   according to the Floquet theory,  every solution of the equation has 

the form 

v(t)  -   eMt ^(t)    , (8-6) 

where   i//(t)   is periodic of period   T.    In addition, the lumped,   linear,  time-invariant 

N   can be described by an input-output relation 

t 
v(t)  =   v   (t)  +   f  W(T) i(t - T) dr    , t  >   0     , (8-7) ~ ~o J ~ — 

where   W(T)   is the   n X n   matrix weighting function of n-port   N   and   v   (t)   takes into 

account the initial conditions. 

Developing the periodic functions   C(t),   i//(t)   and   C(t) (Mt)   into Fourier series, 

we have (see Eq. (2-18)) 

oo jk U)   t 

c(t) =     Z   ck 
e      0     ' (8-8) 

oo j ku  t 

tM =      Z     few e       0      • (8-9) 

and 

-k 
k = -oo 

oo j ku  t 

c(t)0(t) =   Z  4e    0   • (8-10) 

k= oo 
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where   u    = 2jrT.  and it is to be noted that   C,    a e now matrix coefficients instead of 
o k 

scalars as in Eq.(2-18).    The vector coefficients   d     can be expressed in terms of   b 

and   C,    as k 

d    =      T       C.   b , LJ k ~r 
k = -oo 

(r = 0, +1, +2, . ..) (8-11) 

o 
It has been shown    that,  by assuming that the  n-port   N   satisfies both the exponentially 

stable and derivative-stable conditions,  it is possible to obtain the following vector ex- 

pression relating   b      and   d &   ~r ~r 

br  =   (M +Jf^)  Z(M + Jruo) dr     , (8-12) 

where   Z   is the impedance matrix of   N.    The significant fact to be noted here is that it 

is necessary for   N   to be derivative-stable,  i.e.,  the derivative of   W(t, T)   with respect 

to   T   should be integrable for all   t,  in addition to the exponentially stable requirement. 

By substituting Eq. (8-11) into Eq. (8-12),  a system of an infinite set of equations 

for   b     is obtained.    For the system to be compatible,  the associated Hill determinant 

must vanish.    The stability characteristic of this system is delineated by the roots of a 
31 

transcendental equation derived from this infinite Hill determinant. 

Assume the varactors are weakly pumped (or,  equivalently,  assume the pump is 

purely sinusoidal);   then   C   (t), C   (t), . . ., C   (t)   are as given by Eqs. (6-5). and   Co 

and   C     are defined by Eqs. (6-14) and (6-49).    Substituting into Eq. (8-12) coupled with 

Eq. (8-11) yields the linear three-term recursion relations 

d    =   C,h        + C    b    + C, b    . , ~r 1 ~r-l o ~r 1 ~r +1 
(8-13) 

and 

b       ,   + A    b     + b =   0       , (r = 0, +1. +2, . . .)     , (8-14) 
-r + l r ~r       ~r-l        ~r —      — 

where 
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A     =   2p 1    -7—— ; «1  YU+ .jru  ) (8-15) 

P  =   diag 
J91             je2 jen 

Ple       '   p2e         Pne (8-16) 

For simplicity,  consider a single weakly-pumped varactor 

C(t)  =   C     +  2C, cos(u)   t) o 1 o 
(8-17) 

where   p = 2C   /C     is the pumping ratio.     Then the three-term recursion relations are 

d     =   C,h     ,   + C    b     + C, b       , 
r lr-1 or lr + 1 

and 

r +1 r    r r-1 
(r = 0, +1, +2, . . .)     , 

(8-18) 

(8-19) 

where 

(M + JriJ
0) co 

Z(A' + Jru
0) 

(8-20) 

Equation (8-19) is the linear three-term recursion relation which defines the stability 

behavior of a single-varactor parametric device in which all the sideband frequencies 

have been taken into consideration. 

VIII.3    Truncation Technique for an Infinite System 

Stability is implied if all the Floquet exponents have non-positive real parts, i.e.. 

He n < 0. The Floquet exponent n is any solution of the infinite determinant associ- 

ated with the system represented by (8-19) 
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br + l  + Arbr  "'" br-l   =   0     ' (r = 0, +1, +2. .. . ) (8-19) 

where 

r        P in + jru ) C    z(n + jru  ) (8-20) 

For the three-frequency mode of operation,  which is the primary basis for most 

of our broadbanding work,  all the sidebands are suppressed except the signal and the id- 

ler;   that is, 

b    =  0      for all   r   except   r = 0   and   r = -1 (8-21) 

Then we obtain a system of two equations as follows: 

for     r = 0, Ab+b,=0. 
o   o -1 ' 

for      r=-l,        b+A       b       =0 
o -1-1 

(8-22) 

(8-23) 

In order for it to be compatible. 

det (8-24) 

A     A   ,   =    1 
o      -1 (8-25) 

Substituting (8-20) into Eq.(8-25),  we have 

<Co/C/ 
n(|U - ju ) C 

o     o 

[MCO - y(p)j  RM - jWo) Co - y(M - juj]   =   1     .       (8-26) 
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Since Y3U) = y(,i)-MCo and YgU - j^) = y(M-ju^) - (,,,.. j „^ c^ where Yg = Z^1 

and Z3 is the equalizer impedance facing the variable part of the varactor diode, Eq. 

(8-26) can be written in the form 

Y3(M)Y3U-ju,o)  =   ^-j^cj (8-27) 

Therefore, for stability, all the solutions of Eq.(8-27) must be such that Re ^ < 0. 

We can state the stability criterion for the three-frequency model alternatively, as 

follows:   For stability, the equation 

Z3(P>  + ZD(P)  =   0 (8-28) 

must not have a solution in the entire closed right-half p-plane if we wish to include 

stability at the real-frequency boundary. 

We now consider the four-frequency mode of operation in which we allow only the 

signal,  the idler and the upper-sideband frequencies to exist.    Let   b    =0   for all   r   ex- 
r 

cept   r = 0,    r = -1,  and   r = + 1;   then it follows from (8-20) that 

det 

Al 
1 0 

1 A 
o 1 

0 1 A 
-1 

=   0 (8-29) 

A
1
AoA-l-Al-A-l   =   0 (8-30) 

In terms of   Y3,  Eq. (8-31) becomes 

M(H- ju)o)C1 Z3(M)Z3(M- juo)  +K(>i + j1Jo) c^ Z3(/u) Z3(^ + jUo) = !     .     (8-31) 

Since the diode impedance for a weakly-pumped varactor operating in a four-frequency 

mode is given by Eq.(2-38) as 
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zD('i) = " ~;        ~2—~ ä ;        <8-32) 

thus the stability can again be stated in terms of the solutions of the equation 

Z3(p) + zD(p) = 0. 

Clearly,  the stability criteria for the three-frequency and the four-frequency 

modes can be completely different.    In this case the presence of upper-sideband fre- 

quency tends to reduce the negative resistance;   hence it might have a stabilizing effect 

on the characteristic of the three -frequency model.   This picture is misleading because if 

other neglected sideband frequencies are present,   having mutually inverted spectrums, 

then additional negative resistances would be introduced into the system.    It seems 

clear that for stability the complete system,  with all its sidebands,   must be considered. 

The crux of the problem is to determine   ji  from the infinite determinantal equa- 

tion which is,  in general,  transcendental.    For systems governed by the Unear three- 

term recursion relation, 

br + l  + Ar br  + br-l  =   0    ' (^ = 0, + 1, +2, . .. )    , (8-33) 

the infinite determinant is of the special type associated with continued fractions.    To 

develop this,   first let 

Dr  E   (f)  A 
r 2        r 

1 - 
(/i + jruo) Co z(^ + jru  ) (8-34) 

then 

(2) br + l  +    Drbr  +(2) br-l   =   0     ' (r « 0, +1. +2. .. . )     . (8-35) 

The relative voltage amplitudes can be shown to be given by 



r-1 
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(p/2) 

(p/2)2 

r+ 1 
(pnr 

r + 2 

r  >  1 (8-36) 

-(p/2) 

r+ 1 (p/2) 

D 
(p/2)' 

r-l 
r-2 

r  < -1 (8-37) 

Furthermore,  in order for the system (8-35) to be compatible,  expression (8-37) must 

equal the inverse of (8-36).    Thus the infinite determinantal equation is completely 

equivalent to (let   r = 0) 

D    -(p/2) 
o 

Dl- 
(p/2)' 

D (Pl2) 

(pl2f 

D3-.. 

-1 
(p/2r 

=   0     ,     (8-38) 

where the pumping ratio   p   is explicitly exhibited.    Expression (8-38) is suitable for 

computation. 

Let   r = 1   in (8-36) and   r = -2   in (8-37),  and substitute these results into (8-38); 

it can be expressed equivalently as 

Do - (p/2) 
D_1  + (p/2)(b_2/b_1) 

+ (p/2)(b1/b )   =   0 
1    o 

(8-39) 
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|Do  +(p/2)(b1/bo)]   JD^  + (p/2)(b_2/b_1)]   =   (p/2)2     . (8-40) 

From the theory of linear three-term recursion relations, it can be shown32 that 

lbl/b
0l  1   1 (8-41a) 

and 

lb-2/b-ii   1   l     ■ (8-41b) 

Thus the second term in each of the brackets in (8-40) would be bounded by   (p/2),  where 

p   is the pumping ratio.    Using the above results,  it can be concluded that the error in- 

troduced by a truncation technique became small as the number of terms used wa» in- 

creased.    Unfortunately,   we cannot deduce more specific conclusions. 

It seems clear that the validity of the usual technique of truncating the infinite set 

of equations with a finite set and considering the solution of the finite set as an approxi- 

mation to that of the infinite set must be carefully examined as appUed to stability. 

Desoer       has presented an iterative method to estimate the effect of the infinite num- 

ber of neglected frequency terms on the amplitudes.    But,   at the present at least,  there 

is no known method to estimate the effect of the neglected terms on the eigenvalues of 

an infinite system. 

VIII.4    A Stability Test and the Steady-State Response of a Driven System 

Using an energy argument,  a stability test is established8 for the undriven re- 

sponse of varactor-like devices coupled through a linear,  stable, time-invariant n- 

port.    Although the result was originally proved under more general condition«,  it will 

be used here for a lumped system in which the weakly-pumped varactors are uncoupled. 

First,  we discuss in more detail the assumptions imposed on the n-port   N   in order to 

derive the fundamental relation (8-12). 
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The first assumption is that   N   is exponentially stable;   i.e.,  for any choice of 

initial conditions 

Um    e llv   (t) 11   =   0 (8-42) 
~o 

t —* oo 

for all   t   > 0   and the weighting function is integrable 

00 

J    ||W(T)||  dr < oo    . (8-43) 
o 

It is to be noted that the exponential stability assumption is weaker than the usual sta- 

bility definition  which states that   i   uniformly bounded for   t > 0   implies that   v   uni- 

formly bounded for   t > 0;   hence,  it actually requires that there exist a constant   i 

suchthat    ||v   (t)|| < i    for   t > 0.    If we impose the condition that     lim    |lv   (t)||=0, 
t   —» 00 

instead of (8-42),  then the Floquet exponents cannot lie on the boundary.    The second 

assumption,   which is usually overlooked,   is that   N   is also derivative-stable;   i.e.. 

00 

/ 
o 

d W(T) 

dr 
dr  < oo    . (8-44) 

o 

Using the relation (8-12) and an energy argument, it is then shown that a sufficient 

real-frequency criterion for stability of an uncoupled weakly-pumped n-varactor de- 

vice is given by 

1I
üZ<

^
)
IIMAX-

C
M
<
 

1 (8-45) 

where 

CM  »   largest   {c^U+p^   C02(l+P2) ^(1^)}       . (8-46) 

For a single weakly-pumped varactor,  the criterion 

I^^IMAX < CTTTT) (8-47> 
o 
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ensures stability.    Thus the stability criterion leads to easily obtained bounds on the 

pumping ratios of the time-variable elements. 

Since the Floquet theory does not apply to a driven system,   we shall now present 

a result which relates the steady-state response of a driven system consisting of a lin- 

ear time-variable capacitor embedded in a linear time-invariant structure driven with 

the excitation   e       to the response of the undriven system.    More precisely,  we wish 

to prove the following statement:   Given a linear,  lumped,  variable system whose pa- 

rameters are periodic functions of time.    If this system is driven with the excitation 
pt 

e    ,    Re p > 0 ;   then the steady-state response must be of the form 

ePtV(t)     , 

where   V(t)   is periodic,  having the same period as the time-varying parameters of the 

system,  provided that the undriven system is stable in the sense that all the Floquet ex- 

ponents have non-positive real parts. 

To proceed with the proof of this statement,   we first note that it is well known 

that any   nth   order linear differential equation can be transformed into an   n X n   sys- 

tem;    thus,   let us consider a system of equations of the type 

~   =   A(t> X + ePt 1       , (8-48) at n 

where 

A(t)  =    A(t + T)     . (8-49) 

and   X  is an   n X n   matrix and   e      1     is the driver.    Denote   X,    as the matrix solu- 

tion of the homogeneous system 

dX 
A(t)Xu(t)     , (8-50) 

dt h 

and let   X,(t) = X   (t)   be a fundamental set of solutions,  i.e.,   det  fx (t))   ^0;    then no *   o 
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the most general solution of the homogeneous system is given by 

X    (t)  =   X   (t) B    , 
n o (8-51) 

where   B   is a constant matrix.    Choosing the normalization   X  (0) = 1  ,  it then follows 
o n 

from (8-49) that the most general solution is 

X   (t)  =   X   (t) X   (T)     . h oo (8-52) 

According to Floquet theory,  a fundamental matrix of the periodic lumped system 

(8-50) can always be represented as a product of a periodic matrix with the same period 

and a solution matrix for a system with constant coefficients.    Thus   X   (t)   must be of 
o 

the form 

X   (t)  =   P(t)e o 
tK 

(8-53) 

where   P(t) = P(t + T)   and   P(t)   is non-singular since   Xu(t)   is a fundamental matrix 
n 

To link the behavior of the solutions of (8-48) and (8-50), we shall use Volterra- 

type integral equations, and express the solution of (8-48) as solutions of the following 

integral equation       involving solutions of (8-50): 

"1/   »    PT 
:(t)   •   X   (t)B  +    f   X   (t)x"i(T)ePT dx o J       o o (8-54) 

Since the undriven system is assumed to be stable,  the term   X   (t) B   will vanish as 
o 

t —* oo .    Let   B = 0n ;   then a particular solution of (8-48) is given by 

t 
X(t)  =   /   Xo(t)x;1(T)ePTdT    . (8-55) 

o 

Alternatively,   it can be verified by direct substitution that 
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X  (t)  =     f   X   (t)x"1(T)ePT dr (8-56) 
C J o o 

-00 

is also a particular solution.    Substituting (8-53), (8-56) becomes 

X   (t)  =   P(t)    f   e
(t-T)K  p'1(T)ePTdT    . (8-57) 

Now let   t - T = u;   we have 

X  (t)  =   ePt   ^P(t)   /   eU^  p-i(t-u)e-pu   du ^ (8-58) 

By hypothesis,  the undriven system is stable,  i.e.,  the eigenvalues of   K   are non- 

positive,  and,  noting the fact that   Re p > 0,  the integral is convergent.    Furthermore, 

by inspection,  the matrix expression inside the bracket is periodic with period   T. 

Therefore,  we can conclude that the steady-state response of the driven system must 

be of the form 

X   (t)  =   ePt  V(t,p)     , (8-59) 
c 

where V (t, p) is periodic with period T and is a function of p. This result constitutes 

a representation theorem for the steady-state response of a drivien system with an expo- 

nential driver   e    . 



CHAPTER   IX 

SUMMARY 

Parametric devices utilizing back-biased semiconductor diodes exhibit several 

inherent properties which are not shared with other active devices.    To cite a well- 

known property,  the noise processes in a parametric device derive not only from the 

signal source but also from the sideband sources.    In the course of developing a broad- 

banding theory for the parametric amplifier,   some fundamental and perhaps unique 

properties are revealed.    The first property is that the varactor,  when embedded in an 

arbitrary passive environment,  presents an impedance which can be characterized by 

a positive function rather than a positive-real function.    The second and more important 

inherent property of these parametric devices is the quadratic nature of the expression 

of the scattering coefficient at the varactor diode port.    This is due primarily to the in- 

teraction between the signal and the sideband circuits through the frequency-coupling ac- 

tion of the variable capacitor.    In essence,   the broadbanding of a parametric device is 

somewhat analogous to the problem of the design of a broadband equalizer to match a 

load impedance when the load impedance itself is a function of the characteristic of the 

equalizer under consideration! 

It can be shown that an immediate consequence of the latter property is that the 

usual Butterworth or Tchebycheff response is not realizable as a transducer power gain 

function of the varactor parametric amplifier.    It is known that by using a high-gain ap- 

proximation,  the broadbanding problem can be simplified so that the above-mentioned 

quadratic effect will not manifest itself.    However,  this approximation is not imposed 

in our theory;   our point of view is that,  besides the obvious theoretical reason for 

treating the broadbanding problem in its full generality,  practically it might not be de- 

sirable to design a parametric amplifier with too high a gain. 

A major part of this thesis is concerned with the development of a general and 

rigorous broadbanding theory for the varactor parametric amplifier.    A general theory 
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is embodied in Theorems  1 and 2   in which the prescribed transducer power gain func- 

tion must satisfy certain restrictions derived in part from the parasitic elements of 

the varactor.    Some realizability conditions on the transducer power gain functions are 

obtained which are indicative of the inherent properties of the parametric device.    In 

general,   two separate factorization processes must be performed which might lead to 

computational difficulty as the order of complexity of the system increases.    This 

broadbanding technique is applied to the case where we assume     u    u.   = w      u.      and 

Y   (ju  )   =  Y   (ju.),     and an illustrative design example is completely worked out start- 
os o       i 

ing from the prescribed transducer power gain function.    The results agree with that 

obtained by an exact but more restrictive theory.    For the general case, the theory in 

Chapter IV is the only available technique at our disposal. 

In Chapter V,   we consider   cases in which certain assumptions can be made.    Fun- 

damental gain-bandwidth limitations are obtained which are independent of the associated 

circuitry.    These fundamental limitations arise because of the presence of the associa- 

ted parasitic elements.    For the case    u    u.   =  u      u.   ,   an optimum gain-bandwidth 
s    i so    IO 

upper-bound is derived using a property of an arbitrary bounded scattering coefficient 

which is unitary at any point on the ju-axis.    The exact property is proved in Appendix 

B.    This theoretical limitation is useful as an estimate of the optimum gain-bandwidth. 

When the additional assumption that    Y   (ju  )  =  Y   (ju.)    is invoked,   an exact optimum 

gain-bandwidth theory is obtained.    Synthesis procedures are developed for any physi- 

cally realizablf transducer power gain function.    Modified Butterworth and Tchebycheff 

responses of arbitrary order are defined and realized using these synthesis procedures. 

It was proved that these modified responses are capable of achieving the optimum gain- 

bandwidth performance as the order is increased. 

The properties of parametric amplifiers incorporating n varactor diodes are dis- 

cussed in Chapter VI.    Although we have   n   physically uncoupled varactors,  it is shown 

that as far as their electrical behavior is concerned they appear as a completely coupled 

system.    Some results of Chapter V are generalized for multiple varactor amplifiers, 

and some extensions are made to treat the traveling-wave version. 

The noise performance of a varactor device is treated briefly,  using the concept 
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of the noise measure.    The series spreading resistance   R     is included in the analysis 

to show its effect on the noise performance. 

In Chapter VIII, the stability of systems incorporating   n   varactors embedded in 

an arbitrary,  linear,  stable,  time-invariant environment is discussed.    We first proved 

that the stability criterion that   Z   (p) + z^Cp) = 0   has no solution in the closed right- 

half p-plane is valid, provided the ideal sideband-terminations assumption leading to the 

three-frequency mode is invoked.    The validity of the usual truncation technique as ap- 

plied to stability considerations is discussed,   but no definitive answer to this question 

is given.    A real-frequency condition on the stability of the undriven system is available. 

Finally,  we presented a. representation theorem on the steady-state response of a driven 

system with an exponential driver.    In conclusion,  however,  the crucial problem con- 

cerning the validity of the truncation technique remains unsolved and constitutes a major 

obstacle in the understanding of the theory of parametric devices.    Another point worth 

considering is that since most work is confined to the linear mode,  information concern- 

ing stationary states can be obtained only by treating the parametric device in a nonlinear 

mode of operation. 



APPENDIX   A 

This appendix contains an example illustrating the broadbanding technique em- 

bodied in Theorems 3 and 4 in Chapter IV for the case  u   u. ~ u     CJ      and Y,(jio  ) ~ 

V^i>- 
Prescribe the transducer power gain function as 

G8 + a4(K„ + 1)  +   [(K„ + l)/2]■ 
G(a2) = --^ 2  

ß    + ö   (K2 + 1)  + (K2) 

where   u = u/u   ,   K„   > 1   and   G(0) = (K   + 1)   /4K        Thus 
2  - 

G(-p )  = 
^8+ ^4(K2+1)  +   [(K2 + l)/2]: 

&8 + ^4(K2 + 1)  + (K2) 

Then we can uniquely determine from the prescribed   G(-p  )   the following: 

[f + & [(K2 + l)/2] ^ /2  +   [(K2 + l)/2] U2]' 
s   (p)  = 

o ,--i2 

b   (p)   = o 

X( 

^2- ^jy^W^Vä^ l(K2 + i)/2]U2] 

[^ + £ [(K2 + 1)/2]1/4 ^2  +   [(K2 + 1)/2]1/2] 

[(K2 -  l)/2] 

■J G(-P &2) [&4
+  [(K2 + l)/2]] 

(A-l) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 
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3 

1 

10 

and there is a transmission zero at inlViity of multiplicity four;   i.e.,   p   =00,    k    =4. 
Of                   00 

The coefficients of the power se   es expansions of   b  (p)   and   s   (p)   about the 

transmission zero at infinity are givei     respectively,  by 

B00   =    1 
0 

B*   =   -   pK2 -  l)/2ll/4(2)(/2 ) 

(A-6) 
B^  =   [(K2 + l),2]1/2(4) 

B3   =   '   FK2 ■,-1)/213/4(2)(/2 )      , 

and 

to a     =   1 
0 

a^   =    [(Kf + 1)-   [(K2 + l)/2]iy4(2)" (/2 ) 

(A-7) 
00 

a2    = (K^4 + 1) -  [(K2 + l)/2]1/4(2) 
2 

00 
a3   = K^4 (Kf + l)(/2 ) + (K^4 + 1) [(K2 + l)/2] U2 (4) (/I ) 

- [(K2+1)/2]1/40K2+ l)/2]1/2(2)(/2)-(K^4 + l)2[(K2 + l)/2]1''i(2)(/2)  . 

Imposing the conditions (4-68) and (4-69) on the coefficients,  and using (4-62),  we have 

I-.00                         A00                            00     ,0O B     =   A     =   a    b 
0           0           00 

„OO                   A00                     00    ,   00                  00    ,   00                                                                                                                               i   «      ni 
B1   =   A1   =   ao b1  + a1  bo                                                             (A-8) 

^,00            .00             cc     00           00  ,00   ,       00     00 
Bo   =   Ar,   =   a    h„ + a,   b,   + a„  b        , 2            2           o2          11          2o' 

i 

r 
i 

  _""' "" 



and 

where 
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T500 A0» 
B3-A3    >     % 

X ,, Ju      u~   C 4 v  so    10      1 

X4   =   (K2 - l)/2 

Substituting (A-6)  and (A-7) into (A-8), 

b«  =    I 
o 

b" = -(K^ + ixyi) 

*; = < * v2 . 
and 

2 

Then,  by substituting 

br = -(K2
I/4
+I)3(/I/2) 

A4   =   (K2 - l)/4 

B3   =   -  [(K2 + l)/2]3/4(2)(/2) 

into condition (A-9), the gain-bandwidth restriction become 

(A-9) 

(A-10) 

P  - (K^4+ l)(v/2/2) 
b(p)  =   I 71^ ^—      • (A-U) 

P + (K^ + 1) (/2/2) 

(A-12) 

s 



Ill 

^2 , ^o 
io     >     c   — .1/4 

(A-13) 
dC" - i)       " ß   7~ c, 2 V   so    io      1 

where   K     andthed.c.  gain   G(0)are related by   G(0)=(K    +1)  /4K   ;   the normaliz- 

ing frequency   u     and the true  3 db bandwidth are related by 

fK2 + l)/2] {K2-l)  1-2 
K2-6K2 + 1 

1/4 

(A-14) 

Finally,  from Eq. (4-70),   Y„(p)   is obtained as 

YJp) = JÜ     ~ C, Y(p) =   /Ü     ~ C, 
3 v   so   io     1 V   so   io      1 

bo(p) - 8(ß) 

bo(p)     1      i/CK-p2) 

,/ü     IJT7   C  < 
V    SO    IO 1 

*2     A 
P   +p 

(A-15) 



APPENDIX    B 

The following theorem is used in the derivation of the optimum gain-bandwidth 

upper-bound in Section V.2. 

Theorem 6: 

Let   s(p)   be an arbitrary bounded scattering coefficient (not necessarily real for 

real  p) which is unitary at any point on the  ju-axis,  p = ju     ( |w. |   may be infinite), 

but      s(p)|  i  1;   then the product   ß   Ö     must be negative,   where   ß     and   ß,    are the 
o   1 o 1 

first two coefficients of the power series expansion of   s(p)   in the neighborhood of 

P=ju,k. 

Proof:       By hypothesis,   s(p)   is a bounded scattering coefficient;   i.e.,   s(p)   is an- 

alytic and    J8(p)| <   1   in the closed right-half p-plane. 

Define a function   z{p)   as 

z(p)  =    1 - s(p)     . (B-l) 

It is clear that   z(p)   is a positive function.    Since   s(p)   is assumed to be unitary at 

s(juk)   =   e , <B-2) 

p = Juk.  s(p) exhibits the form 

at   p = ju   .    It follows that 

By defining   z(p)   as 

■j9k 
e s(p)  =1       at        p = ju       . (B-3) 

"jek 
S(p)  =   1 - e s(p)    , (B-4) 
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z (p)   is again a positive function,  but now it has a simple zero at   p = j u   . 

First,  suppose    |u   | < oo;   the power series expansion of   z(p)   about   p = ju 

is given by 

z(p)  =   ß(p - 3iok)  + •••     , ß > 0     . (B-5) 

Since   z(p)   is a positive function, the coefficient of the (p - j u. ) term,  ß, must be posi- 
K 

tive.    Note that   ß   cannot equal zero because in that case   z(p)   would be identically 

zero and    |s (p) | = 1. 

Expansion of   s(p)   about   p = ju)     gives 

i 0 

s(p)  =   e +  ß   (p - ju )  +  ...     , (B-6) 

^k 
where   ß    = e       .    Substituting into Eq.(B-4) and equating coefficients of the (p - ju, ) 

term,  we obtain 

ß  =   -e       K ßi  > 0    . (B-7) 

"jek "jek     - 
But,  from   e s(iu, ) = 1,   we have   e = s(ju, ) = ß   .    Therefore, k k o 

- i (jwk) ß1   =   - ßoßl  > 0     , (B-8) 

ß    ß,   < 0     . (B-9) 
o     1 

Incidentally,  this also reveals the interesting fact that if   ß     is real, then   ß     must 

also be real,  even though the   s(p)   we are considering is not necessarily a real func- 

tion of   p.    For    |u   | =  oo,  replace  (p - ju.) by   p       and the same proof holds. 
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A-JCRL AFRD  (CRRL) 
ATTN:    Contract Files 
L G Hanscom Fid, Mass 

AFSC (SCSE) 
Andrews AIB 
Wash 25 D C 

APGC (PGAPI) 
Eglin AFB Fla 

AFSWC (SWOI) 
Kirtland AFB New Mex 

AFMTC (Tech Library MD-135) 
(MTBAT) 

Patrick AFB  Fla 

RADC (RAAPT) 
Grifflss AFB N Y  ' • 

RADC  (RAALD) 
Grifilss AFB N Y 

GEEIA  (ROZMCAT) 
Grifass AFB NY 

RADC (RAIS, ATTN: Mr Malloy) 
Grifilss AFB N Y 

Signal Corps Liaison Officer 
RADC (RAOL, ATTN; MaJ Norton) 
Grifflss AFB NY 

AUL (VT) 
Maxwell AFB Ala 

ASD  (ASAPRD) 
Wright-Patterson AFB Ohio 

ü S Strike Command 
ATTN:    STRJ5-0R 
Mao Dill AFB Fla 

■ AFSC   (SCFRE) 
Andrews AFB 
Wash 25 D C 

Hq USAF (AFCOA) 
Wash 25 D C     ' 

AFOSR (SRAS/Dr G R Eber)        , 
Holloman AFB New Mex 

Conn and ant 
Armed Forces Staff College (Library) 
Norfolk 11 Va 

ADC (ADOAC-DL) 
Eng AFB Colo 

AFFTC  (FTOOT) 
Edwards Am Calif 

ESD (ESRL) 
L G Hanscom Fid 
Bedford Mass 

ESD (ESAT) 
L G Hanscom Fid. 
Bedford Mass 

X 



US Air Force 

AFLC (KCGSAD) 
WPAfB Ohio 

ADC (ADMLP-D) 
Ent APB Colo 

■ COHAC (OCC-O) 
Robins AFB Ga 

ADC (ADMME-DC 
Eng AFB Colo 

Institute of Technology Library 
M3LI-LIB, Bldg 125, Area B 
Wriöit-Patterson AFB Ohio 

ÜSAJSS (ECD) 
San Antonio Tex 

ASD (ASROO) 
(ASNE) 

Wrirfit-Patterson AFB Ohio - 

Hq TAC  (DORQ-S) 
(DOC-C) 
(OA) 

Langley ATB Va 

Hq USAF (AFRDC) 
(AFRDR-NU) 
(APOAC) 
(AFRDP-S) 
(AFt3CE-EA) 
(APOAC-A) 
(AFCOA) 
(AFMO-X-lt) 
(AFOOP-SV-E) 

Wash 2$ DC 

OIC,  FTD Library 
Bldg 826 Area "A" 
Writfit-Patterson AFB Ohio 

AFSC STLO 
111 E 16th St 
New York 3 NT 

AFSC STLO 
6331 Hollywood Blvd 
Los Angeles 28 Calif 

AK-mC (MDO) 
Holloman AFB New Hex 

AFFTC (FTGD) 
Edwards AFB Calif 

ASTIA (TZSIA-S) 
Arlincton ^^i 
Arlincton 12, Va. 

10 cys 

Rons Air Dsvelopoant Centor   5 cys 
Griffiss AF3, NY 
AHN:   (H. Webb, RAWS) 

AUL (3T) 
i'ioxvell AFB, Alabama 

National Asronautica axA  Space AdBiB. 
Lancley Research Center  
Langley Station 
Hcjapton, Virginia 
Attn: Librarian 

H33)' (RIGS) 
Boiling AFB 
Washington 25, .DC 

Hq OAR 2 cys 
Tempo 0. BLdg 
4th St. & Zndepondence Ave,S.W. 
Washington 25, D.C. 
ATTO: MaJ. Ernest Davis 


